HIGH STRENGTH CERAMIC FIBERS AND METHODS OF FABRICATION

    公开(公告)号:US20210253434A1

    公开(公告)日:2021-08-19

    申请号:US17087092

    申请日:2020-11-02

    摘要: A method and apparatus for forming a plurality of fibers from (e.g., CVD) precursors, including a reactor adapted to grow a plurality of individual fibers; and a plurality of independently controllable lasers, each laser of the plurality of lasers growing a respective fiber. A high performance fiber (HPF) structure, including a plurality of fibers arranged in the structure; a matrix disposed between the fibers; wherein a multilayer coating is provided along the surfaces of at least some of the fibers with an inner layer region having a sheet-like strength; and an outer layer region, having a particle-like strength, such that any cracks propagating toward the outer layer from the matrix propagate along the outer layer and back into the matrix, thereby preventing the cracks from approaching the fibers. A method of forming an interphase in a ceramic matrix composite material having a plurality of SiC fibers, which maximizes toughness by minimizing fiber to fiber bridging, including arranging a plurality of SiC fibers into a preform; selectively removing (e.g., etching) silicon out of the surface of the fibers resulting in a porous carbon layer on the fibers; and replacing the porous carbon layer with an interphase layer (e.g., Boron Nitride), which coats the fibers to thereby minimize fiber to fiber bridging in the preform.

    High strength ceramic fibers and methods of fabrication

    公开(公告)号:US10822240B2

    公开(公告)日:2020-11-03

    申请号:US16101730

    申请日:2018-08-13

    摘要: A method and apparatus for forming a plurality of fibers from (e.g., CVD) precursors, including a reactor adapted to grow a plurality of individual fibers; and a plurality of independently controllable lasers, each laser of the plurality of lasers growing a respective fiber. A high performance fiber (HPF) structure, including a plurality of fibers arranged in the structure; a matrix disposed between the fibers; wherein a multilayer coating is provided along the surfaces of at least some of the fibers with an inner layer region having a sheet-like strength; and an outer layer region, having a particle-like strength, such that any cracks propagating toward the outer layer from the matrix propagate along the outer layer and back into the matrix, thereby preventing the cracks from approaching the fibers. A method of forming an interphase in a ceramic matrix composite material having a plurality of SiC fibers, which maximizes toughness by minimizing fiber to fiber bridging, including arranging a plurality of SiC fibers into a preform; selectively removing (e.g., etching) silicon out of the surface of the fibers resulting in a porous carbon layer on the fibers; and replacing the porous carbon layer with an interphase layer (e.g., Boron Nitride), which coats the fibers to thereby minimize fiber to fiber bridging in the preform.