Abstract:
In one embodiment, a method includes receiving and processing an incoming radio frequency (RF) signal in a receiver. Based on this signal, an environmental noise level can be determined, where this level corresponds to environmental noise present in an environment in which the receiver is located. Then, if the environmental noise level is substantially greater than receiver-generated noise, power consumption of at least one analog front end component of the receiver can be reduced.
Abstract:
A method includes receiving a desired channel indication in a radio tuner, determining a band of operation in which the channel is located, and if the channel is within a first band coupling multiple inductors into a resonant tank, and if the desired channel is within a second band coupling a single inductor into the resonant tank.
Abstract:
Integrated low-IF (low intermediate frequency) data receivers and associated methods are disclosed that provide advantageous and cost-efficient solutions.
Abstract:
An apparatus includes processor and a control interface. The processor is adapted to in a first mode of operation, operate as part of one of a wireless receiver and a wireless transmitter and in a second mode of operation. The processor also processes a first audio band signal to generate a second audio band signal. The control interface selects one of the first and second modes of operation.
Abstract:
An integrated low-IF (low intermediate frequency) terrestrial broadcast receiver and associated method are disclosed that provide an advantageous and cost-efficient solution. The integrated receiver includes a mixer, local oscillator generation circuitry, low-IF conversion circuitry, and DSP circuitry. And the integrated receiver is particularly suited for small, portable devices and the reception of terrestrial audio broadcasts, such as FM and AM terrestrial audio broadcast, in such portable devices.
Abstract:
A system includes a cellular radio and an FM transmitter that are fabricated in the same semiconductor. The FM transmitter includes at least one mixer, a filter and an antenna tuning network. The mixer(s) translate an intermediate carrier frequency of an input signal to generate a second signal that has an FM carrier frequency. The filter removes spectral energy from the second signal to generate a third signal. The antenna tuning network is separate from the filter and produces a fourth signal to drive an antenna in response to the third signal.
Abstract:
In one embodiment, the present invention includes a method for configuring a single chip radio tuner having a configurable front end, which may be adapted within an integrated circuit (IC). The method may include setting a controller of the tuner with configuration information for a radio in which the tuner is located. Then, control signals responsive to the configuration information can be sent to the configurable front end to configure the tuner.
Abstract:
A radio frequency (RF) communications device is provided. The RF communications device includes transmitter circuitry configured to generate a calibration signal on a signal line coupled to an antenna port in a calibration mode of operation and an RF output signal for broadcast across the antenna port subsequent to the calibration mode of operation, tuning circuitry coupled to the signal line and configured to receive the calibration signal, and a controller configured to adjust a signal level of the calibration signal generated by the transmitter circuitry and a tuning of the tuning circuitry during the calibration mode of operation. The transmitter circuitry, the tuning circuitry, and the controller are at least partially integrated on the same integrated circuit.
Abstract:
An integrated low-IF (low intermediate frequency) terrestrial broadcast receiver and associated method are disclosed that provide an advantageous and cost-efficient solution. The integrated receiver includes a mixer, local oscillator generation circuitry, low-IF conversion circuitry, and DSP circuitry. And the integrated receiver is particularly suited for small, portable devices and the reception of terrestrial audio broadcasts, such as FM and AM terrestrial audio broadcast, in such portable devices.
Abstract:
A communications device is provided. The communications device includes a first antenna port coupled to a signal line, transmitter circuitry coupled to the signal line and configured to broadcast a radio frequency (RF) output signal across the first antenna port, tuning circuitry coupled to the signal line, and a controller configured to adjust a tuning of the tuning circuitry. The first antenna port, the transmitter circuitry, the tuning circuitry, and the controller are at least partially integrated on the same integrated circuit.