Abstract:
The present invention provides a method for authenticating distributed peripherals on a computer network using an array of physically unclonable functions (PUF). As each PUF is unique, each PUF is able to generate a plurality of challenge response pairs that are unique to that PUF. The integrated circuits of the PUF comprise a plurality of cells, where a parameter (such as a voltage) of each cell may be measured (possibly averaged over many readings). The plurality of cells in the PUF may be arranged in a one, two or more dimensional matrix. A protocol based on an addressable PUF generator (APG) allows the protection of a network having distributed peripherals such as Internet of things (IoT), smart phones, lap top and desk top computers, or ID cards. This protection does not require the storage of a database of passwords, or secret keys, and thereby is immune to traditional database hacking attacks.
Abstract:
An Artificial Neural Network (ANN) is a computational model that is inspired by the way biological neural networks in the human brain process information. The basic computational element (model neuron) is often called a node or unit. It receives input from some other units and/or from external sources. Each input has an associated weight (w), which can be modified so as to model synaptic learning. The present invention disclosures a low-power, controllable, and reconfigurable method to control weights in models neurons. The injection of extremely small electric currents (a few nanoamperes) in each cell forces the resistance to drop abruptly by several orders of magnitudes due to the formation of a conductive path between the two electrodes. These conductive paths dissolve as soon as the current injection stops, and the cells return to their initial state. A repeated injection of currents into the same cell results in an almost identical effect in resistance drop. Different, stable resistance values in each cell can be controllably achieved by injecting different current values.
Abstract:
The present invention provides a method for authenticating distributed peripherals on a computer network using an array of physically unclonable functions (PUF). As each PUF is unique, each PUF is able to generate a plurality of challenge response pairs that are unique to that PUF. The integrated circuits of the PUF comprise a plurality of cells, where a parameter (such as a voltage) of each cell may be measured (possibly averaged over many readings). The plurality of cells in the PUF may be arranged in a one, two or more dimensional matrix. A protocol based on an addressable PUF generator (APG) allows the protection of a network having distributed peripherals such as Internet of things (IoT), smart phones, lap top and desk top computers, or ID cards. This protection does not require the storage of a database of passwords, or secret keys, and thereby is immune to traditional database hacking attacks.
Abstract:
The present invention provides a method for authenticating distributed peripherals on a computer network using an array of physically unclonable functions (PUF). As each PUF is unique, each PUF is able to generate a plurality of challenge response pairs that are unique to that PUF. The integrated circuits of the PUF comprise a plurality of cells, where a parameter (such as a voltage) of each cell may be measured (possibly averaged over many readings). The plurality of cells in the PUF may be arranged in a one, two or more dimensional matrix. A protocol based on an addressable PUF generator (APG) allows the protection of a network having distributed peripherals such as Internet of things (IoT), smart phones, lap top and desk top computers, or ID cards. This protection does not require the storage of a database of passwords, or secret keys, and thereby is immune to traditional database hacking attacks.
Abstract:
A composition of a capacitor and a method to form same are disclosed. The capacitor comprises a first electrode, a second electrode, and at least one cellular material disposed between said first electrode and said second electrode. Further, the capacitor is at least partially impregnated with one or more liquid prepolymers comprising an electrolyte material, which is cured to form a polymeric matrix.
Abstract:
Embodiments of the invention provide a method of detecting one or more strains of Klebsiella pneumoniae. The method may include forming a plurality of mixtures for nucleic amplification. The method can include amplification of specific sequences within the K. pneumonia genome that can provide definitive information to distinguish between one or more types or strains of K. pneumonia.
Abstract:
The present invention provides a method of detecting a heteroresistant population of a pathogen in a sample, the method comprising: a) providing a sample comprising a population of a pathogen; b) extracting nucleic acids from the sample; c) amplifying a target locus of the genome of the pathogen in the extracted nucleic acids, wherein the target locus comprises at least one minor variant associated with drug resistance in the pathogen; d) consecutively sequencing both overlapping nucleic acid strands from a single DNA molecule amplified from the target locus on a Next Generation Sequencing (NGS) platform; e) applying an alignment algorithm to sequencing data from the overlapping nucleic acid strands; and f) performing an analysis of the aligned sequencing data to detect the at least one minor variant and heteroresistant population of the pathogen.
Abstract:
Systems and methods for the generation and use of session keys supporting secure communications between a client and server device are disclosed. The client hashes each of a series of passwords a first number of times. The hashed passwords are sent to a server. The server applies the hashed password to an array of PUF devices, and receives an initial response bitstream which is stored. The client later hashes each of the series of passwords a second number of times, which is less than the first number, and these are sent to the server. The server continues to hash the second message digest, generate PUF responses, and compare the result to the initially stored responses. For each password, the number of hashes necessary to achieve a match is a partial session key. Latency is improved by an array of separately addressable PUFs, each producing a partial session key.
Abstract:
Methods for applying one-way functions for the purposes of cryptography and authentication are disclosed. The methods may be used in cryptographic systems relying on physical unclonable functions or the measurement of biological objects where repeated, sequential applications of one-way functions is required. Under the method, an input bitstream is received. The bitstream may optionally be expanded with a binary nonce and may be optionally transformed into a balanced ternary stream. A polynomial is generated having coefficients that are the values encoded in the stream. The polynomial is raised to a power to generate a second polynomial, and the coefficients of the second polynomial are read as an output stream.
Abstract:
An arrangement and method for detecting number splitting attacks in quantum key distribution systems is disclosed. According to the method, a receiver may detect the presence of an eavesdropper on a transmission channel by detecting an increase in the percent difference between the photon transmission rates of two signals of different wavelengths. The receiver may directly measure a percent difference in photon receive rates as between the two signals, and compare the measured difference with an expected difference. The expected difference may be known, or may be measured by the receiver on the basis of historical data. The expected difference may be computed from the percent difference between the means of the Poisson distributions of the transmitter's laser sources, which may be determined a priori and communicated to the transmitter.