摘要:
The invention relates to a method for generating video holograms in real time for a holographic reproduction device using at least one light modulator means in which a scene split into object points is encoded as a whole hologram in the form of the reconstruction of a visibility region in a periodicity interval of the reconstruction of the video hologram. The reconstruction of an individual object point only requires part of the whole hologram encoded on the light modulator means. The invention is characterized in that, for each object point, the contributions for propagation of the light waves in the visibility region can be determined from at least one look-up table.
摘要:
The present invention relates to a lighting device having a planer optical fiber and at least one light source device for illuminating a controllable spatial light modulator, wherein the optical fiber comprises a light-conducting core and a cover coating, and the light modulator comprises a pixel matrix, the light source device is disposed on the side of the optical fiber, and the light emitted by at least one light source of the light source device propagates laminarly in the optical fiber. The lighting unit according to the invention is characterized in that the planar optical fiber comprises a deflecting coating having a selective polarization function for laminarly decoupling and deflecting the evanescent wave field of the light propagating in the optical fiber, wherein the thickness of the cover coating reduces in the direction of light propagation.
摘要:
The invention relates to an optical reflection system with a reflection element for reflecting reconstruction light waves, an entry-side focal point, from which the reconstruction light waves come when they hit the reflection element, and an exit-side focal point, to which the reconstruction light waves propagate after being reflected from the reflection element. The invention further relates to a tracking system and a holographic projection system with such optical reflection system, and a corresponding holographic projection method. In order to achieve with such an optical reflection system an aberration correction and a tracking of the visibility region and a reconstruction larger than with prior art devices, the optical reflection system according to this invention comprises a deflection element with optically controllable deflection properties and a deflection control means for optically controlling the deflection properties of the deflection element which controls the position of at least the exit-side focal point of the optical reflection system.
摘要:
An optical component deflects light beams which pass though the optical component. The optical component comprises multiple fluid cells arranged next to each other in a regular structure, and an influencing means, where a fluid cell contains at least two immiscible fluids, where an interface will form between two fluids of a fluid cell, where the interface can be given a specifiable shape and/or orientation by the influencing means, where a fluid cell comprises at least one optical medium, where the optical medium is disposed adjacent to a fluid of the fluid cell, where the shape of the surface of the optical medium which faces the adjacently arranged fluid cannot be changed, and where the optical medium serves to deflect the light beams which pass through the fluid cell by a specifiable angle.
摘要:
A tunable optical component includes comprises a plurality of individual tunable liquid cells regularly arranged and integrated to at least one cell structure forming an array on the supporting substrate. A single liquid cell comprises several integrated cell walls, the cell walls projecting away from the supporting substrate and having a closed base area and an open cell surface at the cell wall edges. The liquid cell is filled with at least two liquids or fluids to provide at least one tunable interface area for varying the optical characteristic of the liquid cell.
摘要:
The invention relates to a method for encoding computer-generated holograms in pixelated light modulators, the encoding area of which comprises a pixel matrix whose pixels are provided with a pixel form and a pixel transparency, wherein the encoding area contains a hologram made up of sub-holograms, to each of which is assigned an object point of the object to be reconstructed by the hologram. The corruption of the reconstruction of the hologram caused by the real pixel form and the pixel transparency is largely eliminated and the computing time for correction of the hologram is reduced. Each individual computer-generated sub-hologram is multiplied by a correction function, and only thereafter the corrected sub-holograms are added up to form a total hologram, the correction function being based on the reciprocal of the transform of the pixel function (e.g. 1/sinc) associated with the virtual observer window.
摘要:
A device for correcting the wavelength dependence in diffraction-based optical systems in which certain orders of diffraction are filtered is disclosed, comprising at least one diffractive optical spatial light modulator that has controllable structures, and at least one light source for illuminating the spatial light modulator. Associated orders of diffraction are created which, depending on the wavelength, have a lateral chromatic offset relative to the position of the different extensions thereof on a filter plane defined by the focal length of a downstream optically focusing system, the lateral chromatic offset being in relation to the normal line to the surface of the spatial light modulator. The equinumerous orders of diffraction of different wavelengths overlap to an sufficient extent on a predefined filter plane in relation to both the direction and the extension thereof.
摘要:
A method is disclosed for reconstructing a three-dimensional scene in a holographic display. A 3D scene that is to be reconstructed is decomposed into object points, and one respective object point is encoded as a sub-hologram in the light modulator. Processor means and reconstruction means are provided for calculating and encoding as well as for reconstructing the 3D scene in order to overcome known drawbacks encountered when encoding a hologram and holographically reconstructing the 3D scene in holographic display devices. Processor elements are provided for generating a movable two-dimensional grid in the light modulating means, forming groups of object points from grid-related object points, and sequentially encoding the holograms of said groups of object points, by means of which intrinsically coherent partial constructions of the groups of object points are generated in a rapid sequence, said partial constructions being incoherent relative to one another.
摘要:
A method is disclosed for reconstructing a 3D scene made of object points in a holographic display, wherein the reconstruction is visible from a visibility region. Visibility and/or covering of parts of the 3D scene corresponding to the real parameters is realized, with the reconstruction, for a viewer from every place of the visibility region. Processor means generate a spatial point matrix for defining the positions of individual object points, which are assigned predetermined intensity and phase values. Within the visibility region, a complex-value wave front for each single object point is calculated. The intensity values of the object points are multiplied with the associated visibility function, to determine a common modified wave front of the object points, transformed into the plane of a light modulator to calculate modified control values for the object points.
摘要:
The invention relates to an optical reflection system with a reflection element for reflecting reconstruction light waves, an entry-side focal point, from which the reconstruction light waves come when they hit the reflection element, and an exit-side focal point, to which the reconstruction light waves propagate after being reflected from the reflection element. The invention further relates to a tracking system and a holographic projection system with such optical reflection system, and a corresponding holographic projection method. In order to achieve with such an optical reflection system an aberration correction and a tracking of the visibility region and a reconstruction larger than with prior art devices, the optical reflection system according to this invention comprises a deflection element with optically controllable deflection properties and a deflection control means for optically controlling the deflection properties of the deflection element which controls the position of at least the exit-side focal point of the optical reflection system.