Abstract:
A method and apparatus of a device that acquires transmission configuration indicator (TCI) information for secondary cell (SCell) activation. In some embodiments, the TCI information is acquired for SCell activation by determining, during secondary cell (SCell) activation, that beam information to enable a user equipment (UE) to make a reliable layer 1 (L1)-Reference Signal Received Power (RSRP) measurement report is unavailable, perform the L1-RSRP measurement using information of one or more Synchronization Signal Blocks (SSBs) during the SCell activation, wherein the one or more processors perform the L1-RSRP measurement using information of one or more SSBs during the SCell activation by identifying, by the UE, one or more detectable SSBs during the SCell activation and using information of the one or more detectable SSBs for the L1-RSRP measurement
Abstract:
Techniques to protect a subscriber identity, by encrypting a subscription permanent identifier (SUPI) to form one-time use subscription concealed identifiers (SUCIs) using a set of one-time ephemeral asymmetric keys, generated by a user equipment (UE), and network provided keys are disclosed. Encryption of the SUPI to form the SUCIs can mitigate snooping by rogue network entities, such as fake base stations. The UE is restricted from providing the unencrypted SUPI over an unauthenticated connection to a network entity. In some instances, the UE uses a trusted symmetric fallback encryption key KFB or trusted asymmetric fallback public key PKFB to verify messages from an unauthenticated network entity and/or to encrypt the SUPI to form a fallback SUCIFB for communication of messages with the unauthenticated network entity.
Abstract:
Techniques for identity-based message integrity protection and verification between a user equipment (UE) and a wireless network entity, include use of signatures derived from identity-based keys. To protect against attacks from rogue network entities before activation of a security context with a network entity, the UE verifies integrity of messages by checking a signature using an identity-based public key PKID derived by the UE based on (i) an identity value (ID) of the network entity and (ii) a separate public key PKPKG of a private key generator (PKG) server. The network entity generates signatures for messages using an identity-based private key SKID obtained from the PKG server, which generates the identity-based private key SKID using (i) the ID value of the network entity and (ii) a private key SKPKG that is known only by the PKG server and corresponds to the public key PKPKG.
Abstract:
An evolved Node B (eNB) serves as a primary serving cell (PCell) providing a primary component carrier (PCC) in a licensed spectrum to a user equipment (UE) in a carrier aggregation (CA) scheme. A secondary component carrier (SCC) is provided in an unlicensed spectrum. The eNB monitors parameters of bandwidths in the unlicensed spectrum, when at least one of the parameters indicates a change in availability of a select one of the bandwidths, the eNB generates a control indicator defining the change in availability of the bandwidth and broadcasts the control indicator to the UE, wherein the control indicator affects a modification in a transceiver of the UE associated with the bandwidth.
Abstract:
Apparatus and methods for estimating a location of a wireless device in communication with a wireless network, such as an LTE/LTE-A network, based at least in part on WLAN/WPAN AP measurements and/or barometric measurements are disclosed. The wireless device responds to a location capability inquiry from the wireless network by providing a response that indicates the wireless device is configurable to estimate its location based on WLAN/WPAN AP and/or barometric measurements. The wireless network sends WLAN/WPAN AP and/or barometric reference information to the wireless device to assist in estimating its location. The wireless device measures one or more WLAN/WPAN APs, and the wireless device uses the WLAN/WPAN AP and/or barometric measurements to estimate its location. In some embodiments, GPS/GNSS information is used in conjunction with WLAN/WPAN AP and/or barometric measurements to estimate the location of the wireless device.
Abstract:
Apparatus and methods for estimating a location of a wireless device in communication with a wireless network, such as a UMTS network, based at least in part on WLAN/WPAN AP measurements and/or barometric measurements are disclosed. The wireless device responds to a location capability inquiry from the wireless network by providing a response that indicates the wireless device is configurable to estimate its location based on WLAN/WPAN AP and/or barometric measurements. The wireless network sends WLAN/WPAN AP and/or barometric reference information to the wireless device to assist in estimating its location. The wireless device measures one or more WLAN/WPAN APs, and the wireless device uses the WLAN/WPAN AP and/or barometric measurements to estimate its location. In some embodiments, GPS/GNSS information is used in conjunction with WLAN/WPAN AP and/or barometric measurements to estimate the location of the wireless device.
Abstract:
Embodiments include a computer readable storage medium, a user equipment, a method and an integrated circuit that perform operations. The operations include receiving a downlink channel information (DCI) format 2_0 from a g-NodeB (gNB) connected to the 5G NR network, wherein the DCI format 2_0 includes channel occupancy time (COT) duration and a gap threshold value, determining if a nonzero power channel state information reference signal (NZP-CSI-RS) resource is valid, wherein the NZP-CSI-RS resource is valid if the NZP-CSI-RS resource is within the COT duration and if a gap between a last symbol of the DCI format 2_0 and a first symbol of the NZP-CSI-RS resource is greater than the gap threshold value.
Abstract:
A user equipment (UE) is configured to generate a first credential based on a second credential, wherein the second credential is used for primary authentication between the UE and a core network, generate an identifier corresponding to the first credential and perform, after the primary authentication, an authentication procedure with an edge configuration server (ECS) for access to an edge data network based on transport layer security (TLS)-pre-shared key (PSK) protocols using the first credential.
Abstract:
Approaches are described to enhance radio link monitoring and link recovery for the integration of non-terrestrial networks (e.g., satellites) into next generation wireless communication networks. Certain approaches describe the modification of block error rate threshold requirements based on the particulars of the satellites involved, and the procedure for making those modifications. Other approaches describe the modification of the evaluation period based on the particulars of the satellites involved, and the procedure for making those modifications. In making these modifications, user-equipment (UE)-specific margins are also considered. In addition, modifications to the procedure for higher priority cell search are also described when non-terrestrial wireless communication networks are involved.
Abstract:
A base station includes a transceiver and a processor. The processor is configured to transmit a first synchronization signal block (SSB) burst including a first set of SSBs. The first set of SSBs is transmitted via the transceiver on a first set of beams having a first beam pattern. The processor is also configured to signal, via the transceiver, a change in beam pattern for transmitted SSBs. The change in beam pattern is signaled before or during transmission of a second SSB burst. The processor is further configured to transmit the second SSB burst. The second SSB burst includes a second set of SSBs transmitted via the transceiver on a second set of beams having a second beam pattern. The second set of beams has a different number of beams than the first set of beams, and the second set of SSBs has a different number of SSBs than the first set of SSBs.