DETECTING COALITION FRAUD IN ONLINE ADVERTISING
    371.
    发明申请
    DETECTING COALITION FRAUD IN ONLINE ADVERTISING 审中-公开
    检测在线广告中的联合欺诈

    公开(公告)号:US20160350800A1

    公开(公告)日:2016-12-01

    申请号:US14761043

    申请日:2015-05-29

    Applicant: Yahoo! Inc.

    CPC classification number: G06Q30/0248 G06Q30/0277

    Abstract: The present teaching, which includes methods, systems and computer-readable media, relates to detecting online coalition fraud. The disclosed techniques may include grouping visitors that interact with online content into clusters, obtaining traffic features for each visitor, wherein the traffic features are based at least on data representing the corresponding visitor's interaction with the online content; determining, for each cluster, cluster metrics based on (one or more statistical values of) the traffic features of the visitors in that cluster; and determining whether a cluster is fraudulent based on the cluster metrics of the first cluster. For example, determining whether a cluster is fraudulent may include determining whether a first statistical value of the traffic features related to the first cluster is greater than a first threshold value, and/or determining whether a second statistical value of the traffic features related to the first cluster is lower than a second threshold value.

    Abstract translation: 目前的教学,包括方法,系统和计算机可读介质,涉及检测在线联盟欺诈。 所公开的技术可以包括将与在线内容交互的访问者分组到群集中,为每个访问者获取流量特征,其中流量特征至少基于表示相应访问者与在线内容的交互的数据; 基于(一个或多个统计值)为该群集中的访问者的流量特征确定每个群集的群集度量; 以及基于所述第一集群的集群度量来确定集群是否是欺诈性的。 例如,确定集群是否具有欺诈性,可以包括确定与第一集群相关的业务特征的第一统计值是否大于第一阈值,和/或确定业务特征的第二统计值是否与 第一簇低于第二阈值。

    Method and System for Providing a User Agent String Database
    372.
    发明申请
    Method and System for Providing a User Agent String Database 有权
    提供用户代理字符串数据库的方法和系统

    公开(公告)号:US20160350400A1

    公开(公告)日:2016-12-01

    申请号:US14410702

    申请日:2014-11-25

    Applicant: YAHOO! INC.

    Abstract: Method, system, and programs for determining a keyword from user agent strings are disclosed. In one example, a plurality of user agent strings is received. The plurality of user agent strings is grouped into one or more clusters. The one or more clusters comprise a first cluster that includes two or more user agent strings. The two or more user agent strings in the first cluster are compared. Based on the comparing, a keyword is determined from the first cluster. The keyword represents a type of user agent information.

    Abstract translation: 公开了用于从用户代理字符串确定关键字的方法,系统和程序。 在一个示例中,接收多个用户代理串。 多个用户代理串被分组成一个或多个集群。 一个或多个集群包括包括两个或更多个用户代理字符串的第一集群。 比较第一个集群中的两个或多个用户代理字符串。 基于比较,从第一个集群确定关键字。 该关键字表示一种用户代理信息。

    Expanding a social network by the action of a single user
    375.
    发明授权
    Expanding a social network by the action of a single user 有权
    通过单个用户的动作扩展社交网络

    公开(公告)号:US09495716B2

    公开(公告)日:2016-11-15

    申请号:US14317915

    申请日:2014-06-27

    Applicant: Yahoo! Inc.

    CPC classification number: G06Q50/01 G06Q10/10 H04L51/04 H04L51/32

    Abstract: Techniques for creating a social network are provided. Private relationships that are established (e.g., in the context of instant messaging) may become public by the action of a single user. Each user determines whether they want to be “social” to (or discoverable by) friends of the user's friends. For example, user A is a friend of (i.e., has established a relationship with) user B and user B is a friend of user C, but user A and user C are not friends of each other (i.e., user A and user C have not established a relationship with each other). If user C unilaterally takes an action, then user A is able to see that user C is a friend of user B. User A may then take further actions to attempt to establish a relationship with user C or otherwise contact user C.

    Abstract translation: 提供了创建社交网络的技术。 建立的私人关系(例如,在即时消息的上下文中)可以通过单个用户的动作变得公开。 每个用户都确定他们是否要对用户的朋友的“社交”(或发现)给朋友。 例如,用户A与用户B的朋友(即已经建立了关系),用户B是用户C的朋友,但用户A和用户C不是彼此的朋友(即,用户A和用户C 没有建立起彼此的关系)。 如果用户C单方面采取行动,则用户A能够看到用户C是用户B的朋友。然后,用户A可以采取进一步的动作来尝试与用户C建立关系或以其他方式联系用户C.

    Network graph evolution rule generation
    376.
    发明授权
    Network graph evolution rule generation 有权
    网络图演化规则生成

    公开(公告)号:US09489448B2

    公开(公告)日:2016-11-08

    申请号:US14138501

    申请日:2013-12-23

    Applicant: YAHOO! INC.

    Abstract: A network's evolution is characterized by graph evolution rules. A graph, formed by merging multiple graphs representing the multiple snapshots of the network, that represents an evolutionary network is mined to identify evolutional patterns of the network. A pattern is selected from the identified patterns. Graph evolution rules are generated using identified evolutional patterns. The generated graph evolution rules represent the evolutional patterns of the network, the rules indicating that any occurrence of a child pattern of the selected pattern implies a corresponding occurrence of the selected pattern.

    Abstract translation: 网络演化的特点是图形演化规则。 通过合并表示网络的多个快照的多个图形形成的图形,其表示进化网络被挖掘以识别网络的演进模式。 从所识别的图案中选择图案。 使用识别的进化模式生成图形演化规则。 生成的图形演化规则表示网络的演进模式,指示所选模式的子模式的任何出现的规则意味着所选模式的相应出现。

    LOW KEY POINT OF INTEREST NOTIFICATION

    公开(公告)号:US20160323714A1

    公开(公告)日:2016-11-03

    申请号:US15205745

    申请日:2016-07-08

    Applicant: Yahoo! Inc.

    CPC classification number: H04W4/026 H04W4/027 H04W4/12 H04W64/006

    Abstract: In one embodiment, a location of a mobile device may be obtained. A direction of movement of the mobile device may be ascertained. A field of vision of a user of the mobile device may be determined based, at least in part, on the location of the mobile device and the direction of movement of the mobile device. A user profile associated with the user and/or the mobile device may be identified. A notification may be provided via the mobile device based, at least in part, upon the user profile and the field of vision of the user.

    METHOD FOR IDENTIFYING MULTIPLE DEVICES BELONGING TO THE SAME GROUP
    378.
    发明申请
    METHOD FOR IDENTIFYING MULTIPLE DEVICES BELONGING TO THE SAME GROUP 有权
    用于识别相同组的多个设备的方法

    公开(公告)号:US20160323239A1

    公开(公告)日:2016-11-03

    申请号:US14700616

    申请日:2015-04-30

    Applicant: Yahoo! Inc.

    Abstract: The technologies described herein identify multiple electronic devices belonging to the same group. A computer system receives, from network accessing applications of a plurality of electronic devices, internet protocol (IP) trajectory information about the network accessing applications via a network. The IP trajectory information includes a user identifier, a list of IP addresses associated with each of the network accessing applications, and timestamps specifying times each of the network accessing applications accesses the network. The computer system identifies and removes commercial IP addresses from the list of IP addresses, analyzes IP trajectory information to retrieve a most commonly used IP address for each of the network accessing applications during a certain period, and determines that different network accessing applications belong to the same group if the most commonly used IP addresses for the different network accessing applications are the same.

    Abstract translation: 本文描述的技术标识属于同一组的多个电子设备。 计算机系统从网络访问多个电子设备的应用,接收关于通过网络访问应用的网络的网络协议(IP)轨迹信息。 IP轨迹信息包括用户标识符,与每个网络访问应用相关联的IP地址的列表,以及每个网络访问应用访问网络的时间戳指定时间。 计算机系统从IP地址列表中识别和删除商业IP地址,分析IP轨迹信息,以便在特定时间段内为每个网络访问应用程序检索最常用的IP地址,并确定不同的网络访问应用程序属于 如果不同网络访问应用程序最常用的IP地址相同,那么同一组。

    CATEGORIZING HASH TAGS
    379.
    发明申请

    公开(公告)号:US20160314189A1

    公开(公告)日:2016-10-27

    申请号:US15199420

    申请日:2016-06-30

    Applicant: Yahoo! Inc.

    Abstract: A content item categorizer system retrieves content items from Internet sources. If a retrieved content item includes sufficient information for traditional categorization methods, then the system assigns one or more categories to the content item using such traditional methods. The system creates a metadata model, based on information about traditionally-categorized content items, that maps at least hashtags from the content items to one or more content categories. When the system retrieves a sparse-info item that does not include sufficient information for traditional categorization, the system applies the metadata model to categorize the content item using at least hashtags in the sparse-info item. The metadata model may also include information indicating mappings between categories and coincidence of hashtags and additional content item attributes. Also, the metadata model may provide information for categorizing sparse-info items based on multiple hashtags in the sparse-info item metadata.

Patent Agency Ranking