摘要:
There is a method of fault clearance for a DC power grid (10), wherein the DC power grid (10) includes: a plurality of DC terminals (12a,12b,12c,12d); a plurality of DC power transmission media (14a,14b, 14c,14d) to interconnect the plurality of DC terminals (12a, 12b, 12c, 12d); and a plurality of DC circuit interruption device stations (18), each DC circuit interruption device station (18) being associated with a respective one of the plurality of DC power transmission media (14a,14b, 14c, 14d) and a respective one of the plurality of DC terminals (12a, 12b,12c, 12d), each DC circuit interruption device station (18) including a DC circuit interruption device (20) to selectively interrupt current flow in the associated DC power transmission medium (14a, 14b, 14c, 14d), the method comprising the steps of: (i) detecting one or more faults occurring in the plurality of DC power transmission media (14a, 14b, 14c,14d); (ii) after detecting the or each fault, opening all of the DC circuit interruption devices (20) to interrupt current flow in the plurality of DC power transmission media (14a,14b, 14c,14d); (iii) measuring electrical characteristics of each DC power transmission medium (14a, 14b, 14c,14d); (iv) identifying the or each faulty DC power transmission medium (14a, 14b, 14c, 14d), in which the or each fault is located, based on the measured electrical characteristics of the plurality of DC power transmission media (14a, 14b, 14c, 14d); and (v) after identifying the or each faulty DC power transmission medium (14a, 14b, 14c, 14d) in which the or each fault is located, inhibiting closing of the or each DC circuit interruption device (20) that is associated with the or each faulty DC power transmission medium (14a,14b, 14c,14d), in which the or each fault is located, and closing the or each DC circuit interruption device (20) that is associated with the or each non-faulty DC power transmission medium (14a, 14b, 14c, 14d), in which the or each fault is not located.
摘要:
The disclosure relates to a method for localizing and quenching an arc in a PV generator of a PV system, wherein the PV generator includes at least two PV subgenerators. An arc quenching circuit is associated with each PV subgenerator. The method includes detecting an arc in the PV generator. Then, a probability value is determined for each of the PV subgenerators, wherein the probability value is correlated with a probability that the arc is located in the corresponding PV subgenerator. A sequence for activating the arc quenching circuits is then determined that is dependent on the determined probability values. Then, the arc quenching circuits are activated successively in the order of the determined sequence.
摘要:
Fault location on a non-homogeneous electric power line that includes a plurality of sections by determining a section in which negative-sequence voltage magnitude profiles calculated from each terminal of the power line intersect. The fault location may determine the faulted section and determine the location of the fault within the faulted section. To determine the fault location, the negative-sequence voltage magnitude profiles may be calculated from measurements taken at each terminal of the power line and compared to determine a point where the profiles intersect. The profiles may be calculated using power line properties and measurements from each terminal.
摘要:
An outage intelligence application receives event messages indicative of occurrences associated with various devices within a power grid. The outage intelligence application determines a state of the various devices based on the event messages. Based on the event messages, the outage intelligence application can determine can determine and confirm an outage condition associate with a particular device. A fault intelligence application receives synchrophasor data for each phase in a multi-phase power grid. The synchrophasor includes phasor magnitude and phasor angle information for each phased. Based on the synchrophasor data, the fault intelligence application determines the presence of a fault involving one or more of the phases and identifies a particular fault type.
摘要:
A power distribution feeder system includes a plurality of power sources, a plurality of switching components coupled to the power sources by a plurality of line sections, and an IED coupled to each switching component and configured to monitor any line section coupled to the switching component, each IED containing protection logic configured to detect a jump in current on a faulted line section, communicate the jump in current to other IEDs coupled to the faulted line section, receive information from the other IEDs coupled to the faulted line section regarding any jump in current detected by the other IEDs, employ the received information from the other IEDs to confirm a fault in the faulted line section, and issue a trip command to isolate the faulted line section based on the current jump detected by the IED and current jump information received from other IEDs coupled to the line section.
摘要:
Various embodiments disclosed herein provide protection to monitored equipment at both a local level and a system level, in order to offer more comprehensive protection. In one particular embodiment, the protected equipment may include one or more generators. The protection system may utilize time-synchronized data in order to analyze data provided by systems having disparate sampling rates, that are monitored by different equipment, and/or equipment that is geographically separated. Various embodiments may be configured to utilize a variety of sampling rates.
摘要:
A power management and distribution system includes a source block having a power distribution line, wherein the power distribution line includes a distribution switch. At least one load block is in operable communication with the power distribution line and having a plurality of load block power output lines, wherein each of the plurality of load block power output lines includes a load switch. Further included is a plurality of loads each carried power by at least one of the plurality of load block power output lines. Yet further included is a protection logic unit comprising at least one algorithm for comparing a power characteristic to a power characteristic threshold at a plurality of locations, wherein the protection logic unit selectively determines which of the source block switches, distribution switches and the load switches of the plurality of load block power output lines are opened based on at least one comparison.
摘要:
Disclosed are adaptive communication assisted protection and control. Local intelligent electronic devices (IEDs) associated with local switching devices and having unique IDs may transmit switch status and unique IDs to an area IED. The area IED may calculate topology using switch status, and provide control information to local IEDs using the topology. The area IED may communicate the unique ID of the local IED calculated to be immediately upstream of each local IED and, upon detection of a fault, the local IEDs may send blocking signals that include the received unique ID of the IED immediately upstream therefrom. The area IED may communicate control commands that include the unique IDs and control commands for the local IEDs to take the control action. Upon matching of the unique ID in the control command with its own unique ID, the local IEDs may take the control action and transmit remaining actions.
摘要:
Various embodiments disclosed herein provide protection to monitored equipment at both a local level and a system level, in order to offer more comprehensive protection. In one particular embodiment, the protected equipment may include one or more generators. The protection system may utilize time-synchronized data in order to analyze data provided by systems having disparate sampling rates, that are monitored by different equipment, and/or equipment that is geographically separated. Various embodiments may be configured to utilize a variety of sampling rates.
摘要:
In a power protection and distribution assembly a trip system monitors electrical current and sends a current status signal to an arc flash protection system indicating whether current characteristic of an arc event is detected. The arc flash protection system evaluates this current status signal along with a light status signal indicating whether light characteristic of an arc event has been detected. Based on this evaluation, the arc flash protection system sends a control signal to the trip system for controlling the trip system to trip a breaker. The systems each include a full-duplex signaling module for sending the signals between the systems over a pair of conductors. Each signaling module sends one of the signals by modulating the magnitude of a current through or a voltage across the conductors, and receives the other signal by demodulating the magnitude of the current through or the voltage across the conductors, as distinctively modulated by the other signaling module.