Abstract:
A stage driving system capable of positioning an object with a higher speed and a higher precision than prior systems. The system includes a base member, plural movable members provided on the base member, and a controller for controlling the plural movable members so as to substantially suppress the vibration of the base member caused by the displacements of the plural movable members.
Abstract:
An apparatus is disclosed for automatically controlling the position of a plurality of slitters for slitting a moving web. A slitter blade and a slitter band are secured respectively to a first and second housing members such that the slitter band cooperates with the slitter blade for slitting the web between the slitter blade and the band. An electronic control is connected to a first and second motor for selectively positioning the blade and band adjacent to each other. The electronic control includes a first and second control module secured to a first and second motor respectively. A digital control computer is connected to the modules for selectively controlling movement of the modules by sending the modules to a designated location using a predetermined number of stepping increments. A monitor is connected to the computer for displaying the position of the slitter blade and the band and a communication bus sequentially conducts control signals from the computer to the modules and sequentially conducts command signals from the modules to the computer for positioning the slitter blade and the band adjacent to each other. A wear detection switch is disposed adjacent the blade for detecting slitter blade wear, the detection switch being electrically connected to the first control module such that when the slitter blade wears, a wear detection signal is generated and conducted from the first module to the computer for compensating for such slitter blade wear.
Abstract:
A carton blank folding and gluing system having a feeder unit, a variety of units, a gluing unit, a stacking unit and belts for continuously conveying carton blanks to the units. The carton blanks are of various types and sizes. The system operates to move only the attachments required for folding or gluing the carton blank to predetermined positions in the units and to retract attachments not required for folding or gluing the carton blank. A control device is provided, in which the predetermined positions of all of the attachments required for folding or gluing the carton blank are automatically determined, stored and outputted by receiving a signal representative of the type of carton blank and signals representative of the dimensions of particular parts of the carton blank.
Abstract:
A method includes disposing an intervention service tool within a tubular. The intervention service tool includes an anchoring system, a shifting system, and a linear actuator system. The tubular includes a shifting profile geometry disposed within the tubular at a first location. The anchoring system, the shifting system, and/or the linear actuator system is actuated. Shifter system pressure, linear actuator system force/pressure, and displacement of the shifting system is measured. A known graph of the shifting profile geometry is compared to one or more of a measured pressure, a measured force, or a measured displacement. A position of a key disposed on the shifting system is determined relative to the shifting profile. The shifting profile geometry is engaged with the key based on the position of the key. The shifting profile geometry is positioned at a second location that is different from the first location.
Abstract:
A method includes disposing an intervention service tool within a tubular. The intervention service tool includes an anchoring system, a shifting system, and a linear actuator system. The tubular includes a shifting profile geometry disposed within the tubular at a first location. The anchoring system, the shifting system, and/or the linear actuator system is actuated. Shifter system pressure, linear actuator system force/pressure, and displacement of the shifting system is measured. A known graph of the shifting profile geometry is compared to one or more of a measured pressure, a measured force, or a measured displacement. A position of a key disposed on the shifting system is determined relative to the shifting profile. The shifting profile geometry is engaged with the key based on the position of the key. The shifting profile geometry is positioned at a second location that is different from the first location.
Abstract:
An operation of a processing machine with redundant actuators is controlled according to a reference trajectory by selecting, from a set of points forming a segment of the reference trajectory to be processed for a period of time, a subset of points corresponding to a fraction of the period of time. The subset of points is selected such that the redundant actuators are capable to position the worktool at each point in the subset within the period of time and are capable to maintain the worktool at the last point of the subset after the period of time while satisfying constraints on motion of the redundant actuators. The constraints on motion are selected based on the mode of operation of the processing machine. The segment of the reference trajectory is modified in the time domain and the control inputs for controlling the motion of the redundant actuators are determined using the modified segment of the reference trajectory.
Abstract:
A method computes reference signals for a machine with redundant positioning by first generating a reference trajectory according to an ordered list of points. Then, using a filter or by choosing the value of the reference at each sampling time, a reference trajectory for the slow subsystem is produced. Next, determine whether the reference trajectory and the slow subsystem reference trajectory violate feasibility constraints, and if true, slowing down the reference trajectory and repeating with the generation of the slow subsystem reference trajectory. The slow subsystem reference trajectory is sent, via a model predictive control block, to a slow positioning subsystem controller, and a combination of the slow subsystem reference trajectory and the reference trajectory is sent to a fast positioning subsystem controller.
Abstract:
In this machining method, in which a rotary tool is moved relative to a workpiece and/or the workpiece is moved relative to the rotary tool so as to machine a curved surface on said workpiece, rotation in the direction of said curved surface is added to the workpiece such that the positions of reversal marks left on the curved surface per tool path are dispersed in the direction of said rotation.
Abstract:
An operation of a processing machine with redundant actuators is controlled according to a reference trajectory by selecting, from a set of points forming a segment of the reference trajectory to be processed for a period of time, a subset of points corresponding to a fraction of the period of time. The subset of points is selected such that the redundant actuators are capable to position the worktool at each point in the subset within the period of time and are capable to maintain the worktool at the last point of the subset after the period of time while satisfying constraints on motion of the redundant actuators. The segment of the reference trajectory is modified in the time domain and the control inputs for controlling the motion of the redundant actuators are determined using the modified segment of the reference trajectory.
Abstract:
The invention relates to seat device, in particular an office chair, with a seat element, a backrest, a support frame on which the seat element and the backrest are disposed with a plurality of joints and sensors disposed on the seat device. The sensors detect physical and/or chemical properties generated by the seat device.