Abstract:
Embodiments are directed to an optical spectrometry method, comprising: generating a sequence of 2D Hadamard masks along the time dimension, wherein each 2D Hadamard mask is arranged with a wavelength dimension and a coefficient dimension; detecting an optical signal from light transmitted through the sequence of 2D Hadamard masks; and reconstructing a spectrum to be detected by analyzing the optical signal, wherein each 2D Hadamard mask in the sequence of 2D Hadamard masks comprises a plurality of columns along the wavelength dimension, each column corresponding to a different Hadamard coefficient, and having different respective sequency values along the time dimension.
Abstract:
An imaging method and system are presented for use in sub-wavelength super resolution imaging of a subject. The imaging system comprises a spatial coding unit configured for collecting light coming from the scanned subject and being spaced from the subject a distance smaller than a wavelength range of said light; a light detection unit located upstream of the spatial coding unit with respect to light propagation from the object, and configured to define a pixel array and a spatial decoding unit, which is associated with said pixel array and is configured for applying spatial decoding to a magnified image of the scanned subject, thereby producing nanometric spatial resolution of the image.
Abstract:
Method and apparatus for analyzing radiation using analyzers and employing the spatial modulation of radiation dispersed by wavelength or along a line.
Abstract:
An apparatus and method are provided for creating an image of a microarray. The apparatus includes at least one light source configured to direct light toward the microarray. The apparatus includes an excitation filter configured to filter the light into a first frequency band towards dichromatic mirror. The dichromatic mirror reflects light onto the microarray causing the microarray to emit electromagnetic energy. The apparatus includes emission filter configured to filter the electromagnetic energy within a second frequency band. The apparatus further includes an imaging unit having a charged coupled device (CCD), the CCD having an imaging surface masked by a pinhole blind such that when the pinhole blind receives electromagnetic energy from the emission filter, an image is created of the entire micro array.
Abstract:
In one embodiment, the disclosure relates to a method including: collecting photons from the sample having a plurality of regions to form a sample optical data set; selectively transmitting a first portion of the optical data set through a first of a plurality of apertures of an electro-optical shutter, each of the plurality of apertures optically communicating a portion of the optical data set; geometrically conforming the first portion of the optical data set for communication with a spectrometer opening; processing the conformed first portion of the optical data set at the spectrometer to obtain a spectrum for a first of the plurality of sample regions.
Abstract:
A prescription verification system includes a database that contains a plurality of spectral signatures corresponding to identified pharmaceuticals. A multimodal multiplex sampling (MMS) spectrometer obtains a spectra of a pharmaceutical to be identified and verified. The pharmaceutical can be inside or out of a vial. The prescription verification system includes algorithms for matching spectra of pharmaceuticals to be verified obtaining using the MMS spectrometer to spectral signatures contained in the database corresponding to identified pharmaceuticals. The prescription verification system further includes algorithms for identifying such pharmaceuticals to be verified.
Abstract:
Method and apparatus for analyzing radiation using analyzers and encoders employing the spatial modulation of radiation dispersed by wavelength or imaged along a line.
Abstract:
A hyper-spectral imaging system comprises imaging foreoptics to focus on a scene or object of interest and transfer the image of said scene or object onto the focal plane of a spatial light modulator, a spatial light modulator placed at a focal plane of said imaging foreoptics, an imaging dispersion device disposed to receive an output image of said spatial light modulator, and an image collecting device disposed to receive the output of said imaging dispersion device.
Abstract:
Encoded spatio-spectral information processing is performed using a system having a radiation source, wavelength dispersion device and two-dimensional switching array, such as digital micro-mirror array (DMA). In one aspect, spectral components from a sample are dispersed in space and modulated separately by the switching array, each element of which may operate according to a predetermined encoding pattern. The encoded spectral components can then be detected and analyzed. In a different aspect, the switching array can be used to provide a controllable radiation source for illuminating a sample with radiation patterns that have predetermined characteristics and separately encoded components. Various applications are disclosed.
Abstract:
A multispectral imaging system (1) and method utilize an optical processor (3) for simultaneously comparing an input wavelength spectrum observed in a single spatial pixel in a scene image from a multispectral imager (2) with a plurality of template wavelength spectra to find a correlation. The optical processor exploits the three-dimensional attributes of optical correlation to perform massively parallel correlation processing by modulating (4) respective ones of a plurality of spectral bands of the input wavelength spectrum of an incident light beam (6) with modulating elements (5) to alter at least one property of the incident light beam by a value corresponding to the observed intensity of the input spectrum in the respective spectral band. In a disclosed embodiment, the modulated beam is expanded and transited through a spatial light modulator (7) having a two-dimensional array of modulating elements. Each row of the elements of the array alter the at least one property of the incident light by values corresponding to a particular template wavelength spectrum of a plurality of template wavelength spectra of the modulator. The values corresponding to each template spectrum are the conjugates of the representative values of the modulating elements of the template spectrum of the plurality of template spectra.