Abstract:
The technology disclosed relates to a platform for ultra-fast, ad-hoc data exploration and faceted navigation on integrated, heterogenous data sets. The disclosed method of declarative specification of visualization queries, display formats and bindings represents queries, widgets and bindings combined on a dashboard in real time, with flexible display options for analyzing data and conveying analysis results.
Abstract:
The disclosed technology includes systems and methods for a recursive cell-based hierarchy for data visualization. The technology disclosed relates to a platform for ultra-fast, ad-hoc data exploration and faceted navigation on integrated, heterogeneous data sets. The disclosed apparatus and methods for secure isolation of scripting from graphics make it possible to securely share live data as rendered on a live dashboard, for both desktop and mobile application environments, without saving a new state on a server when time data and dashboard elements are updated. The disclosed recursive cell-based hierarchy for data visualization makes it possible to target multiple platforms—generating data visualization representations that can be displayed when rendered natively on both desktop and mobile devices, and when rendered in a browser window.
Abstract:
The technology disclosed relates to a platform for ultra-fast, ad-hoc data exploration and faceted navigation on integrated, heterogeneous data sets. The disclosed method of declarative specification of visualization queries, display formats and bindings represents queries, widgets and bindings combined on a dashboard in real time, with flexible display options for analyzing data and conveying analysis results.
Abstract:
The technology disclosed relates to a platform for ultra-fast, ad-hoc data exploration and faceted navigation on integrated, heterogeneous data sets. The disclosed apparatus and methods for visual data analysis with animated informational morphing replay provide live data rendering on a live dashboard, with flexible display options for analyzing data and conveying analysis results.
Abstract:
The disclosed technology includes systems and methods for a recursive cell-based hierarchy for data visualization. The technology disclosed relates to a platform for ultra-fast, ad-hoc data exploration and faceted navigation on integrated, heterogeneous data sets. The disclosed apparatus and methods for secure isolation of scripting from graphics make it possible to securely share live data as rendered on a live dashboard, for both desktop and mobile application environments, without saving a new state on a server when time data and dashboard elements are updated. The disclosed recursive cell-based hierarchy for data visualization makes it possible to target multiple platforms—generating data visualization representations that can be displayed when rendered natively on both desktop and mobile devices, and when rendered in a browser window.
Abstract:
Aggressive exploration can involve multiple, successive queries and visualizations. This creates difficulty scaling the resources needed to deliver fast responses. It is particularly complicated by regular rebuilding of analytic data stores, whether daily or on demand. Migrating queries using the technology described involves migrating indexed fields, known as dimensions, and quantity fields, known as measures, in the background during a query session. A session that starts in server query processing mode may switch to client query processing as enough data fields have been copied from the server to the client. When the client determines that it has enough data fields to process an incoming query, it can locally process the new query without passing it to the server. Since both the server and client are working from copies of the same read only analytic data structure, a user receives the same results from either client or the server.
Abstract:
The technology disclosed relates to a platform for ultra-fast, ad-hoc data exploration and faceted navigation on integrated, heterogeneous data sets. The disclosed method of declarative specification of visualization queries, display formats and bindings represents queries, widgets and bindings combined on a dashboard in real time, with flexible display options for analyzing data and conveying analysis results.
Abstract:
In accordance with embodiments, there are provided mechanisms and methods for performing a synchronization of data. These mechanisms and methods for performing a synchronization of data can enable a more efficient synchronization, time and resource savings, an enhanced user experience, etc.
Abstract:
The technology disclosed relates to a platform for ultra-fast, ad-hoc data exploration and faceted navigation on integrated, heterogenous data sets. The disclosed method of declarative specification of visualization queries, display formats and bindings represents queries, widgets and bindings combined on a dashboard in real time, with flexible display options for analyzing data and conveying analysis results.
Abstract:
The disclosed technology includes systems and methods for making visual representations actionable. This technology makes it possible to drill into data, identify records and take action directly, enhancing customized data visualization representations. The technology disclosed relates to a platform for ultra-fast, ad-hoc data exploration and faceted navigation on integrated, heterogeneous data sets. The disclosed systems and methods for adding and customizing quick actions make it possible for developers, admins, and ISVs to provide customized actionable visual data representations with direct linking for accessing data in a company's records and for linking to third party sites, without saving a new state on a server when dashboard elements are updated. The disclosed systems and methods for making data visualizations actionable in an analytics environment also make it possible to target multiple platforms—generating lenses and dashboards that let users take advantage and access data in a company's records and link to other websites.