Abstract:
A microbial fuel cell for generating electricity. The microbial fuel cell includes an anode and a cathode electrically coupled to the anode. The anode is in contact with a first fluid including microorganisms capable of catalyzing the oxidation of ammonium. The anode is in contact with a second fluid including microorganisms capable of catalyzing the reduction of nitrite. The anode and the cathode may be housed in a single compartment, and the cathode may rotate with respect to the anode. The microbial fuel cell can be used to remove ammonium from wastewater, to generate electricity, or both.
Abstract:
A bioelectricalchemical system includes an anode, an algal bioreactor, and a cathode. The anode is at least partially positioned within an anode chamber containing a first aqueous reaction mixture including one or more organic compounds and one or more bacteria for oxidizing the organic compounds. The algal bioreactor contains a second aqueous reaction mixture including one or more nutrients and one or more algae for substantially removing the nutrients from the second aqueous reaction mixture. The cathode is at least partially positioned within the algal bioreactor.
Abstract:
A microbial desalination cell includes an anode, a cathode, a saline solution chamber and a cathode rinsing assembly. The anode is at least partially positioned within an anode chamber for containing an aqueous reaction mixture including one or more organic compounds and one or more bacteria for oxidizing the organic compounds. The cathode is directly exposed to air. The saline solution chamber is positioned between the anode and the cathode, and is separated from the anode by an anion exchange material and from the cathode by a cation exchange material. The cathode rinsing assembly is for rinsing the cathode with a catholyte.
Abstract:
What is provided are a novel system, method, and computer program product for hierarchical (telescopic) color error diffusion which effectively controls the dot distribution for both primary and secondary dot formation which covers the class of error diffusion that follow telescopic dot firing constraint principles. In one example embodiment, an input CMYK ink coverage is received. The input CMYK ink coverage is transformed into a CMYKRGB domain using a CMYK to CMYKRGB conversion. A weighted error value can be added to each color component of the CMYKRGB domain. The color components of the CMYKRGB domain are hierarchically grouped into a plurality of subgroups based on relative dot visibility. More visible subgroups are half-toned earlier to achieve maximum uniform dot distribution. Dots of specific color channels within subgroups are fired based on thresholding and a set of decision rules provided herein.
Abstract:
What is disclosed is a system and method for diffusing pixel error in a halftoning process in a color management system. The present method divides a modified CMYK input into a real and imaginary portions. The real portion is the coverage achieved by a physically realizable positive dot. The imaginary portion comprises a an imaginary negative dot and an imaginary excess dot. Each of these dots are processed separately, on a per-pixel basis, in a novel CMYK to CMYKKpRGB conversion discussed in detail herein. Hierarchical thresholding is preformed on the conversion output to produce a high-quality halftone result. A cumulative pixel error sum is derived therefrom and combined with the input CMYK coverages of a next pixel. All pixels are processed. The halftone output generated hereby has the pixel error compensated. Other embodiments are provided.
Abstract:
A microbial fuel cell (MFC) includes a cation exchange membrane defining an anode chamber, an anode positioned in the anode chamber, and a cathode in contact with an exterior of the cation exchange membrane. A restrictor in contact with the cation exchange membrane defines an opening through which water flows into or out of the anode chamber. The MFC includes bacteria in the anode chamber that oxidize organic compounds in the water while oxygen is reduced at the cathode, such that electricity is generated in the absence of an external power source. In an example, the MFC is coupled to a buoy and provides electricity to an electrically powered device also coupled to the buoy, thereby providing a low-maintenance source of power in remote locations. The electrically powered device may be, for example, a light or a sensor.
Abstract:
Image data processing methods, hard imaging devices, and articles of manufacture are described. According to one embodiment, an image data processing method includes accessing image data of an image and comprising a plurality of pixels, defining a plurality of subsets of the pixels, defining an overlapping region comprising image data of pixels located adjacent to a boundary intermediate one and an other of the subsets, independently processing the image data of the one and the other of the subsets individually comprising comparing the image data for respective ones of the pixels with a plurality of thresholds corresponding to respective ones of the pixels, and modulating the thresholds of the pixels of the overlapping region using a common modulation pattern for both the processing of the one and the other subsets.
Abstract:
In its many embodiments, the present invention provides a novel class of pyrazolo[1,5-a]pyrimidine compounds as inhibitors of cyclin dependent kinases, methods of preparing such compounds, pharmaceutical compositions containing one or more such compounds, methods of preparing pharmaceutical formulations comprising one or more such compounds, and methods of treatment, prevention, inhibition, or amelioration of one or more diseases associated with the CDKs using such compounds or pharmaceutical compositions.
Abstract:
In its many embodiments, the present invention provides a novel class of pyrazolo[1,5-a]pyrimidine compounds as inhibitors of cyclin dependent kinases, methods of preparing such compounds, pharmaceutical compositions containing one or more such compounds, methods of preparing pharmaceutical formulations comprising one or more such compounds, and methods of treatment, prevention, inhibition, or amelioration of one or more diseases associated with the CDKs using such compounds or pharmaceutical compositions.
Abstract:
A method of gray component replacement receives a current pixel color value. A highlight likelihood and color neutrality is determined for the current pixel color value. An output pixel color value depending upon the color neutrality and the highlight likelihood is generated. The input pixel color value is obtained from an image acquisition system and the output color pixel value is used by an output engine to render the pixel.