Abstract:
A device enabling simultaneous recording and playback allows commercials to retain their advertisement function even if the commercials are skipped over during a playback process. By digital watermarking, CM-substitute data is embedded in program data among video signals broadcasted from a broadcast station. CM-substitute data is to present information such as a particular sponsor name and commodity name on display. The video recording/playback device includes a randomly accessible storage unit and has a simultaneous recording/playback capability. If commercial video is skipped over and is not rendered by playback, the CM-substitute information is superimposed on the rendered video of the program associated with the commercial. Thus, the commercial advertisement function can be retained.
Abstract:
A direct type backlight unit used in a liquid crystal display device is provided which can suppress lowering of luminance at an electrode portion of a linear light source. A reflecting plate is formed on a side wall of a box-shaped reflector close to an end of a linear light source. The reflector reflects light beams from the linear light source to be guided toward a liquid crystal panel. The reflecting plate on the side wall has at least two inclined surfaces. The inclined surfaces may have a stepped shape or a convex ridge shape. According to this arrangement, it is possible to reduce or eliminate decrease of the luminance level at ends of an effective display area of a liquid crystal panel.
Abstract:
The present invention provides a technique for performing gamma correction processing when there are a plurality of characteristic areas, each of which is characterized by the high frequency in a luminance histogram to improve the impression of contrast. According to the present invention, a luminance characteristic detector (4) detects the luminance of an input image signal and a microcomputer (5) calculates an APL and a luminance histogram of an input image signal. A gamma correction circuit (6) performs the gamma correction processing in response to the luminosity of the input image signal by use of the result of the calculation carried out by the microcomputer (5). Then, if there are a plurality of characteristic areas, each of which is characterized by the high frequency in the luminance histogram, a characteristic emphasis circuit (7) performs grayscale extension processing for the plurality of characteristic areas. This makes it possible to perform the most suitable processing in response to the input image signal so that the impression of contrast is improved.
Abstract:
A video signal processing apparatus includes a characteristic detection circuit for detecting luminance distribution corresponding to one frame of a video signal, a contrast compensation circuit for compensating contrast of the video signal, an edge compensation circuit for compensating an edge portion of the video signal, and a control circuit for determining a luminance range to be controlled on the basis of the luminance distribution detected by the characteristic detection circuit, and controlling the contrast compensation circuit and edge compensation circuit to conduct predetermined compensation on the video signal belonging to the luminance range. The control circuit controls the contrast compensation circuit to increase contrast for the video signal in the luminance range as compared with the video signal in other regions, and controls the edge compensation circuit to make an edge compensation quantity for the video signal in the luminance range smaller as compared with other regions.
Abstract:
An object of the present invention is to provide an image display technology with which high contrast can be stably obtained. In order to achieve the above object, the present invention changes the gain of a digital luminance signal by feeding back information on maximum and average luminance levels of the luminance signal, adjusts image contrast, and in accordance with the average luminance level detected from the feedback system, controls the illuminance of the backlight applied to a display unit. The control increases the illuminance of the backlight when the detected average luminance level is higher than the upper-limit value of a previously set reference range, and reduces the illuminance when the detected average luminance level is lower than the lower-limit value of the reference range.
Abstract:
A technique for flexibly converting the number of frames of a displayed image on the basis of a motion in the image or information of an image signal such as a program genre is provided. An image processing apparatus includes an input unit to which an image signal having a predetermined frame rate is input, an information acquirer for acquiring information concerning the input image signal, and a frame rate converter for converting the frame rate of the input image signal and outputting a resultant signal. The frame rate converter conducts the frame rate conversion of the input image signal on the basis of the information (such as the motion in the image or the program genre) of the input image signal acquired by the information acquirer.
Abstract:
A disclosed technique for adjusting the image quality uses a moving picture for a sample stored in advance on a storage medium. A plurality of sample moving picture images, based on the moving picture for a sample read from the storage medium, having different image quality relative to each other are displayed on the screen. This technique enables confirmation of how the actual image having been subjected to the image quality adjustment would be displayed in an apparatus for displaying a moving image, such as a television receiver, because the sample stored on the storage medium is a moving picture.
Abstract:
An image display apparatus includes a backlight unit including a plurality of light sources arranged in a flat, a reflecting portion for reflecting light from the light sources, a diffuser for diffusing the light from the light sources and the light reflected from the reflecting portion, and a chassis for maintaining or supporting the light sources, the reflecting portion and the diffuser; and a liquid crystal display unit which receives the light diffused by the diffuser of the backlight unit. Concave portions are formed in the chassis at positions corresponding to electrodes of the plurality of light sources, positions corresponding to light-emitting portions of the light sources are arranged in a flat, and a circuit for driving the liquid crystal display unit is provided on a rear surface of a planar portion of the chassis. Accordingly, it is possible to realize a thin lightweight backlight with high luminance and high luminance uniformity.
Abstract:
A picture quality correction circuit is provided which performs contour correction by grasping features of an input video signal accurately. The correction circuit has a filter circuit for extracting contour components in an inputted video signal, a contour component nonlinear processor for changing amplitudes of the contour components extracted by the filter circuit, an adder for adding outputs of the contour component nonlinear processor and the input video signal, a histogram detection circuit for detecting a histogram of the contour components extracted by the filter circuit, and a control circuit for controlling contour emphasis quantities for the contour component nonlinear processor in accordance with the results of detection by the histogram detection circuit.
Abstract:
A video signal processing apparatus includes a characteristic detection circuit for detecting luminance distribution corresponding to one frame of a video signal, a contrast compensation circuit for compensating contrast of the video signal, an edge compensation circuit for compensating an edge portion of the video signal, and a control circuit for determining a luminance range to be controlled on the basis of the luminance distribution detected by the characteristic detection circuit, and controlling the contrast compensation circuit and edge compensation circuit to conduct predetermined compensation on the video signal belonging to the luminance range. The control circuit controls the contrast compensation circuit to increase contrast for the video signal in the luminance range as compared with the video signal in other regions, and controls the edge compensation circuit to make an edge compensation quantity for the video signal in the luminance range smaller as compared with other regions.