Abstract:
The objective of the present invention is to have a desired screen displayed with shortened waiting time in using functions for the electronic note, etc., while engaging in telephone talk. Another prime objective of the present invention is to achieve an easy-to-use mobile information terminal equipment which also functions as an electronic note, word processor, personal computer, and so on. In transmitting from telephone mode (cover closed status) to information terminal mode (cover opened status), the screen to be displayed is determined to be either a historical information, talk log information, or user setting screen. This enables the user to obtain the desired screen with fewer number of operations and with less waiting time.
Abstract:
An apparatus for inspecting drawing accuracy in a liquid droplet ejection apparatus performs drawing by ejecting a function liquid droplet while moving a function liquid droplet ejection head relative to a workpiece by using a moving mechanism. In response to the relative movement, a laser irradiating mechanism performs visually recognizable stippling on the workpiece by irradiating coherent light thereon. A control part drives the laser irradiating mechanism for stippling at a predetermined frequency timing.
Abstract:
A tape-like carrier for mounting of an integrated circuit including leads secured to a flexible insulating film has metallic radiation films provided on the flexible insulating film around each aperture formed in the film for a semiconductor pellet. The leads project from the respective metallic radiation film inwardly of the respective aperture. Heat of the leads during an inner lead bonding is immediately conducted to the metallic radiation film and released from the surface thereof so that heat of the leads can be more efficiently removed from the leads during the inner lead bonding.
Abstract:
A liquid ejecting apparatus includes a head unit that ejects a liquid onto a medium; a first liquid accommodation unit that accommodates the liquid; a second liquid accommodation unit that is different from the first liquid accommodation unit; a first flow channel that communicates with the first liquid accommodation unit and the head unit; a second flow channel that communicates with the first flow channel and the second liquid accommodation unit; and a liquid supply unit that delivers the liquid from the first liquid accommodation unit to the second liquid accommodation unit through the first flow channel and the second flow channel and that returns the liquid from the second liquid accommodation unit to the first liquid accommodation unit through the second flow channel and the first flow channel.
Abstract:
A liquid ejecting apparatus includes a storage unit which stores liquid, a head unit which ejects the liquid onto a medium, a plurality of supply flow paths which supplies the liquid to the head unit from the storage unit, a plurality of bypass flow paths which straddles the supply flow paths which are different from each other, and a controller which circulates the liquid in a circulating flow path which is configured only by the supply flow path and the bypass flow path among the storage unit, the head unit, the supply flow path, and the bypass flow path.
Abstract:
A method is for controlling a droplet discharge device including at least a droplet discharge head having a plurality of nozzles for discharging droplets of a functional liquid, a plurality of drive elements provided corresponding to each of the nozzles, and a vibrating plate which is vibrated by the drive elements to discharge the functional liquid from the nozzles; and a flushing unit in which the vibrating plate undergoes microvibration when the droplet discharge head is in a standby period. The method for controlling a droplet discharge device includes selecting one of a plurality of predetermined microvibration control programs for causing the vibrating plate to undergo microvibration in accordance with information relating to the functional liquid, and controlling the drive elements to cause the vibrating plate to undergo microvibration when the droplet discharge head is in the standby period in accordance with the selected microvibration control program.
Abstract:
A droplet discharge device includes: a discharge unit discharging a droplet and being moved relatively to a discharged object, on which the droplet is discharged, so as to form a predetermined pattern on the discharged object; a discharge amount measurement unit measuring a discharge amount of the droplet discharged from the discharge unit; a temperature acquisition unit acquiring a temperature of the droplet in the formation of the predetermined pattern; a temperature adjustment unit adjusting the temperature of the discharge unit; and a discharge amount adjustment unit adjusting the discharge amount of the discharge unit. In the device, the temperature adjustment unit adjusts a temperature of the droplet in the measurement of the discharge amount by the discharge amount measurement unit to the temperature in the formation of the predetermined pattern.
Abstract:
A droplet discharge device includes an inkjet head including a nozzle plate having a nozzle, the inkjet head aligned so that a droplet of a function liquid discharged from the nozzle is placed on a surface of a target, a heater applying heat to the function liquid at the inkjet head, and an insulating member having an opening corresponding to the nozzle, the insulating member positioned between the target and the nozzle plate so as to prevent heat transmission from the inkjet head to the target.
Abstract:
A method for forming a mark includes ejecting a droplet of a liquid from a nozzle onto an ejection target position on a surface of an object along an ejecting direction; radiating a laser beam from a radiation port onto the ejection target position along a radiating direction; and pivoting the nozzle and the radiation port together about the ejection target position as a pivot center, thereby changing the angle between a normal line of the surface of the object and the ejecting direction and the angle between the normal line and the radiating direction while maintaining the angle between the ejecting direction and the radiating direction.
Abstract:
A liquid droplet discharge apparatus that discharges liquid droplets onto a work includes a liquid container that contains liquid, a head that discharges the liquid droplets, and a liquid supply device that is disposed between the liquid container and the head and that supplies the liquid from the liquid container to the head. The liquid supply device includes a first tube connected between the liquid container and the head that supplies the liquid, a second tube surrounding an outer circumference of the first tube, and a fluid circulating unit that contains deaerating fluid in a space defined between the first tube and the second tube to circulate the deaerating fluid while deaerating gases contained in the deaerating fluid to outside the second tube through the second tube.