Stent viewing using a learning based classifier in medical imaging
    22.
    发明授权
    Stent viewing using a learning based classifier in medical imaging 有权
    在医学成像中使用基于学习的分类器进行支架观察

    公开(公告)号:US08311308B2

    公开(公告)日:2012-11-13

    申请号:US12960625

    申请日:2010-12-06

    IPC分类号: G06K9/00 A61B6/02

    摘要: Stent viewing is provided in medical imaging. Stent images are provided with minimal or no user input of spatial locations. Images showing contrast agent are distinguished from other images in a sequence. After aligning non-contrast images, the images are compounded to enhance the stent. The contrast agent images are used to identify the vessel. A contrast agent image is aligned with the enhanced stent or other image to determine the relative vessel location. An indication of the vessel wall may be displayed in an image also showing the stent. A preview images may be output. A guide wire may be used to detect the center line for vessel identification. Various detections are performed using a machine-trained classifier or classifiers.

    摘要翻译: 在医疗成像中提供支架观察。 支架图像提供最小或没有空间位置的用户输入。 显示造影剂的图像与序列中的其他图像不同。 对准非对比度图像后,复合图像以增强支架。 造影剂图像用于识别血管。 造影剂图像与增强的支架或其他图像对准以确定相对血管位置。 可以在也显示支架的图像中显示血管壁的指示。 可以输出预览图像。 引导线可用于检测用于船舶识别的中心线。 使用机器训练的分类器或分类器执行各种检测。

    Method and system for intelligent digital subtraction
    23.
    发明授权
    Method and system for intelligent digital subtraction 有权
    智能数字减法方法与系统

    公开(公告)号:US08244020B2

    公开(公告)日:2012-08-14

    申请号:US12286992

    申请日:2008-10-03

    摘要: A method and system for intelligent digital subtraction is disclosed. The method and system for intelligent digital subtraction can be used in a roadmap application for a coronary intervention. A mask image is obtained with vessels highlighted by contrast media. A guide wire is inserted into the vessels, and a guide wire image is obtained. A direct subtraction image is generated from the guide wire image and the mask image. A reduced noise subtraction image is generated based on mutual image information between the subtraction image and the guide wire image and mutual image information between the subtraction image and the mask image.

    摘要翻译: 公开了一种智能数字减法的方法和系统。 用于智能数字减法的方法和系统可用于冠状动脉干预的路线图应用。 用造影剂强调的血管获得掩模图像。 将引导线插入容器中,并获得导丝图像。 从引导线图像和掩模图像生成直接减法图像。 基于减法图像和引导线图像之间的相互图像信息以及减法图像和掩模图像之间的相互图像信息,生成降噪噪声减影图像。

    Method and system for human vision model guided medical image quality assessment
    24.
    发明授权
    Method and system for human vision model guided medical image quality assessment 有权
    人类视觉模型的方法与系统指导医学图像质量评估

    公开(公告)号:US08086007B2

    公开(公告)日:2011-12-27

    申请号:US12286970

    申请日:2008-10-03

    IPC分类号: G06K9/00

    摘要: A method and system for image quality assessment is disclosed. The image quality assessment method is a no-reference method for objectively assessing the quality of medical images. This method is guided by the human vision model in order to accurately reflect human perception. A region of interest (ROI) of medical image is divided into non-overlapping blocks of equal size. Each of the blocks is categorized as a smooth block, a texture block, or an edge block. A perceptual sharpness measure, which is weighted by local contrast, is calculated for each of the edge blocks. A perceptual noise level measure, which is weighted by background luminance, is calculated for each of the smooth blocks. A sharpness quality index is determined based on the perceptual sharpness measures of all of the edge blocks, and a noise level quality index is determined based on the perceptual noise level measures of all of the smooth blocks. An overall image quality index can be determined by using task specific machine learning of samples of annotated images. The image quality assessment method can be used in applications, such as video/image compression and storage in healthcare and homeland security, and band-width limited wireless communication.

    摘要翻译: 公开了一种用于图像质量评估的方法和系统。 图像质量评估方法是客观评估医学图像质量的非参考方法。 这种方法是以人类视觉模型为指导,以准确反映人类的感知。 医学图像的感兴趣区域(ROI)被划分成相等大小的不重叠块。 每个块被分类为平滑块,纹理块或边缘块。 针对每个边缘块计算出由局部对比度加权的感知锐度度量。 为每个平滑块计算感知噪声水平测量,其由背景亮度加权。 基于所有边缘块的感知锐度测量来确定锐度质量指标,并且基于所有平滑块的感知噪声水平测量来确定噪声水平质量指数。 可以通过使用注释图像的样本的任务特定机器学习来确定整体图像质量指数。 图像质量评估方法可用于医疗保健和国土安全中的视频/图像压缩和存储等应用,以及带宽有限的无线通信。

    Method for medical imaging
    27.
    发明申请
    Method for medical imaging 有权
    医学成像方法

    公开(公告)号:US20050288578A1

    公开(公告)日:2005-12-29

    申请号:US11165099

    申请日:2005-06-23

    申请人: Peter Durlak

    发明人: Peter Durlak

    IPC分类号: A61B6/00 A61B6/12

    摘要: A method for medical imaging is provided, wherein a current position of a medical instrument inserted into a moving examination area of a patient is displayed. The medical instrument is displayed within a reconstructed three-dimensional image of the moving examination area based on position data of the instrument registered with a coordinate system of the reconstructed three-dimensional image. The reconstructed three-dimensional image is a simulation of the moving examination area using a pre-insertion 3D image of the examination area correlated with pre-insertion ECG data of the patient. A display of the reconstructed three-dimensional image is triggered by current ECG data of the patient.

    摘要翻译: 提供一种用于医学成像的方法,其中显示插入到患者的移动检查区域中的医疗器械的当前位置。 基于重建的三维图像的坐标系登记的仪器的位置数据,将医疗器械显示在移动检查区域的重建三维图像内。 重建的三维图像是使用与患者的插入前ECG数据相关的检查区域的预插入3D图像的移动检查区域的模拟。 重建的三维图像的显示由患者的当前ECG数据触发。

    Stent marker detection using a learning based classifier in medical imaging
    28.
    发明授权
    Stent marker detection using a learning based classifier in medical imaging 有权
    在医学成像中使用基于学习的分类器进行支架标记检测

    公开(公告)号:US09119573B2

    公开(公告)日:2015-09-01

    申请号:US12960635

    申请日:2010-12-06

    IPC分类号: A61B6/12 A61B6/00

    CPC分类号: A61B6/12 A61B6/503 A61B6/504

    摘要: Stent marker detection is automatically performed. Stent markers in fluoroscopic images or other markers in other types of imaging are detected using a machine-learnt classifier. Hierarchal classification may be used, such as detecting individual markers with one classifier and then detecting groups of markers (e.g., a pair) with a joint classifier. The detection may be performed in a single image and without user indication of a location.

    摘要翻译: 自动执行支架标记检测。 使用机器学习分类器检测透视图像或其他类型成像中的其他标记物的支架标记。 可以使用分层分类,例如用一个分类器检测单个标记,然后用联合分类器检测标记组(例如,一对)。 检测可以在单个图像中执行,而不用用户指示位置。

    System and method for detecting and tracking a guidewire in a fluoroscopic image sequence
    30.
    发明授权
    System and method for detecting and tracking a guidewire in a fluoroscopic image sequence 有权
    用于在透视图像序列中检测和跟踪导丝的系统和方法

    公开(公告)号:US07792342B2

    公开(公告)日:2010-09-07

    申请号:US11675678

    申请日:2007-02-16

    IPC分类号: G06K9/00

    摘要: A system and method for populating a database with a set of image sequences of an object is disclosed. The database is used to detect localization of a guidewire in the object. A set of images of anatomical structures is received in which each image is annotated to show a guidewire, catheter, wire tip and stent. For each given image a Probabilistic Boosting Tree (PBT) is used to detect short line segments of constant length in the image. Two segment curves are constructed from the short line segments. A discriminative joint shape and appearance model is used to classify each two segment curve. A shape of an n-segment curve is constructed by concatenating all the two segment curves. A guidewire curve model is identified that includes a start point, end point and the n-segment curve. The guidewire curve model is stored in the database.

    摘要翻译: 公开了一种使用一组对象的图像序列填充数据库的系统和方法。 数据库用于检测对象中导丝的定位。 接收一组解剖结构的图像,其中每个图像被注释以示出导丝,导管,线尖和支架。 对于每个给定的图像,使用概率增强树(PBT)来检测图像中恒定长度的短线段。 从短线段构建两段曲线。 使用歧视关节形状和外观模型对每个两段曲线进行分类。 通过连接所有两个段曲线构建n段曲线的形状。 识别出导线曲线模型,其包括起始点,终点和n段曲线。 导丝曲线模型存储在数据库中。