摘要:
A method for downsampling fluoroscopic images and enhancing guidewire visibility during coronary angioplasty includes providing a first digitized image, filtering the image with one or more steerable filters of different angular orientations, assigning a weight W and orientation O for each pixel based on the filter response for each pixel, wherein each pixel weight is assigned to a function of a maximum filter response magnitude and the pixel orientation is calculated from the angle producing the maximum filter response if the magnitude is greater than zero, wherein guidewire pixels have a higher weight than non-guidewire pixels, and downsampling the orientation and weights to calculate a second image of half the resolution of the first image, wherein the downsampling accounts for the orientation and higher weight assigned to the guidewire pixels.
摘要:
A system and method for populating a database with a set of image sequences of an object is disclosed. The database is used to detect localization of a guidewire in the object. A set of images of anatomical structures is received in which each image is annotated to show a guidewire, catheter, wire tip and stent. For each given image a Probabilistic Boosting Tree (PBT) is used to detect short line segments of constant length in the image. Two segment curves are constructed from the short line segments. A discriminative joint shape and appearance model is used to classify each two segment curve. A shape of an n-segment curve is constructed by concatenating all the two segment curves. A guidewire curve model is identified that includes a start point, end point and the n-segment curve. The guidewire curve model is stored in the database.
摘要:
A method for online optimization of guidewire visibility in fluoroscopic images includes providing an digitized image acquired from a fluoroscopic imaging system, the image comprising an array of intensities corresponding to a 2-dimensional grid of pixels, detecting a guidewire in the fluoroscopic image, enhancing the visibility of the guidewire in the fluoroscopic image, calculating a visibility measure of the guidewire in the fluoroscopic image, and readjusting acquisition parameters of the fluoroscopic imaging system wherein the guidewire visibility is improved.
摘要:
A method for online optimization of guidewire visibility in fluoroscopic images includes providing an digitized image acquired from a fluoroscopic imaging system, the image comprising an array of intensities corresponding to a 2-dimensional grid of pixels, detecting a guidewire in the fluoroscopic image, enhancing the visibility of the guidewire in the fluoroscopic image, calculating a visibility measure of the guidewire in the fluoroscopic image, and readjusting acquisition parameters of the fluoroscopic imaging system wherein the guidewire visibility is improved.
摘要:
A method for downsampling fluoroscopic images and enhancing guidewire visibility during coronary angioplasty includes providing a first digitized image, filtering the image with one or more steerable filters of different angular orientations, assigning a weight W and orientation O for each pixel based on the filter response for each pixel, wherein each pixel weight is assigned to a function of a maximum filter response magnitude and the pixel orientation is calculated from the angle producing the maximum filter response if the magnitude is greater than zero, wherein guidewire pixels have a higher weight than non-guidewire pixels, and downsampling the orientation and weights to calculate a second image of half the resolution of the first image, wherein the downsampling accounts for the orientation and higher weight assigned to the guidewire pixels.
摘要:
A system and method for populating a database with a set of image sequences of an object is disclosed. The database is used to detect localization of a guidewire in the object. A set of images of anatomical structures is received in which each image is annotated to show a guidewire, catheter, wire tip and stent. For each given image a Probabilistic Boosting Tree (PBT) is used to detect short line segments of constant length in the image. Two segment curves are constructed from the short line segments. A discriminative joint shape and appearance model is used to classify each two segment curve. A shape of an n-segment curve is constructed by concatenating all the two segment curves. A guidewire curve model is identified that includes a start point, end point and the n-segment curve. The guidewire curve model is stored in the database.