Abstract:
A set top terminal is provided that includes a receiver having at least one tuner for receiving programming content over a content delivery system and a processor operatively associated with the receiver. The set top terminal also includes a switched digital video (SDV) application module operatively associated with the processor. The SDV application module is configured to perform an autodiscovery process by tuning to prescribed autodiscovery frequencies received by the tuner while the SDV application module is being initialized.
Abstract:
A computer program product is tangibly embodied on a computer-readable medium and includes executable code that, when executed, is configured to cause a data processing apparatus to display multiple objects in a three dimensional (3D) representation, where the multiple objects are visual representations of real objects, and display a subset of the objects and associated metadata in a shaped lens that is movable within the 3D representation in all three axes, where the subset of the objects displayed within the shaped lens are sized larger than the objects outside of the shaped lens.
Abstract:
A system and method for compressing and decompressing a texture image that: (1) compresses each texel to 8 bits, and when decompressed, each texel is of a quality comparable to a 256 color palettized image; (2) increases the efficiency of the decompression system and method by eliminating complex operations, e.g., multiplication; and (3) increases the efficiency of the system and method when switching between textures that use different palettes, when compared to conventional system and methods. The invention compresses a texture image, stores the compressed texture image, and quickly and efficiently decompresses the texture image when determining a value of a pixel. The texture image compression technique utilizes a palletized color space that more closely matches the colors in the texture image while allocating an unequal number of bits to the color channels. Each texel in the texture image is converted to an 8-bit value in the selected color space, and a decompression table is generated that represents the RGB values for the each texel stored in the selected color space. In order to map the texture image to the object, one or more texels that are associated with each pixel are decompressed. The present invention quickly and efficiently decompresses each texel using a hardware decompression unit. The decompression unit does not perform any multiplication operations.