Abstract:
An image adjustment apparatus includes a receiver which is configured to receive a first input image of an object which is time-synchronously captured and a second input image in which a motion event of the object is sensed time-asynchronously, and an adjuster which is configured to adjust the first input image and the second input image.
Abstract:
An image adjustment apparatus includes a receiver which is configured to receive a first input image of an object which is time-synchronously captured and a second input image in which a motion event of the object is sensed time-asynchronously, and an adjuster which is configured to adjust the first input image and the second input image.
Abstract:
In an example embodiment, an image processing device includes a pixel array including pixels two-dimensionally arranged and configured to capture an image, each of the pixels including a plurality of photoelectric conversion elements and an image data processing circuit configured to generate image data from pixel signals output from the pixels. The image processing device further includes a color data processing circuit configured to extract color data from the image data and output extracted color data. The image processing device further includes a depth data extraction circuit configured to extract depth data from the image data and output extracted depth data. The image processing device further includes an output control circuit configured to control the output of the color data and the depth data.
Abstract:
Disclosed is an image adjustment apparatus including a receiver which is configured to receive a first input image of an object which is time-synchronously captured and a second input image in which a motion event of the object is sensed time-asynchronously, and an adjuster which is configured to adjust the first input image and the second input image.
Abstract:
In one example embodiment, a lens calibration method includes generating a distorted image by distorting a pattern image that includes at least two reference points separated from a center of the pattern image by different distances. The method further includes generating lens calibration data by comparing the pattern image with the distorted image.
Abstract:
In image processing, a color fringe is removed. The processing includes selecting a maximum gradient magnitude among gradient magnitudes for each of color components in an image, calculating a boundary of a dilated near-saturation region in the image, detecting a transition region in the image according to the maximum gradient magnitude and the dilated near-saturation region, and removing a color fringe from the transition region.