Abstract:
An image sensor includes: a sensor substrate including a plurality of first pixels configured to sense light of a first wavelength and a plurality of second pixels configured to sense light of a second wavelength; and an anti-reflection element provided on the sensor substrate, wherein the anti-reflection element includes a plurality of low-refractive index patterns and a high-refractive index layer provided between the plurality of low-refractive index patterns and the sensor substrate.
Abstract:
Provided is an image sensor including a light sensor array including a plurality of light sensors configured to detect an incident light and convert the incident light into an electrical signal, the plurality of light sensors being are provided in a plurality of pixels, a transparent layer provided on the light sensor array, a color separation element provided on the transparent layer and configured to separate the incident light into light of a plurality of colors based on a wavelength band, and a focusing element including a nanostructure in a region corresponding to at least one pixel among the plurality of pixels and configured to perform auto focusing.
Abstract:
An optical sensor including a planar nano-photonic microlens array and an electronic apparatus including the same are provided. The optical sensor may include: a sensor substrate including a plurality of photosensitive cells for sensing light; a filter layer provided on the sensor substrate; and a planar nano-photonic microlens array provided on the filter layer, and including a plurality of planar nano-photonic microlenses, wherein the plurality of planar nano-photonic microlenses are two-dimensionally arranged in a first direction and a second direction that is perpendicular to the first direction, and each of the planar nano-photonic microlenses include nano-structures arranged such that the light transmitting through each of the planar nano-photonic microlenses has a phase profile in which a phase change curve is convex in the first direction and the second direction.
Abstract:
Provided are a color separation element and an image sensor including the same. The color separation element includes a spacer layer; and a color separation lens array, which includes at least one nano-post arranged in the spacer layer and is configured to form a phase distribution for splitting and focusing incident light according to wavelengths, wherein periodic regions in which color separation lens arrays are repeatedly arranged are provided, and the color separation lens array is configured to interrupt phase distribution at the boundary of the periodic regions.
Abstract:
An image sensor includes a pixel array including a first pixel row, in which a plurality of first pixels and a plurality of second pixels are alternately arranged, and a second pixel row, in which a plurality of second pixels and a plurality of third pixels are alternately arranged; first color separation elements configured to allow light having a second wavelength band, among incident light, to pass therethrough and travel in a downward direction, and to allow a mixture of light having a first wavelength band and light having a third wavelength band, among the incident light, to pass therethrough and travel in a lateral direction; and first color filters on at least a portion of the plurality of first pixels, the first color filters being configured to transmit only the light having the first wavelength band.
Abstract:
A color separation element array includes color separation elements which are two-dimensionally arranged to separate an incident light according to a wavelength such that a light of a first wavelength is directed to a first direction and a light of a second wavelength that is different from the first wavelength is directed to a second direction that is different from the first direction. Each of the color separation elements includes a first element and a second element that are sequentially arranged along a traveling direction of the incident light, and the first element and the second element of the color separation elements are symmetrically shifted with respect to a center area of the color separation element array, to be aligned to fit to the traveling direction of the incident light that is obliquely incident.
Abstract:
A stacked type image sensor with improved optical characteristics, which may result from a color separation element, and an image pickup apparatus including this image sensor. The stacked type image sensor includes first and second light sensing layers arranged in a stacked manner, and color separation elements positioned between the first and second light sensing layers. Accordingly, the first light sensing layer absorbs and detects light of a first wavelength band, and the second light sensing layer detects light of second and third wavelength bands separated by the color separation elements.
Abstract:
At least one example embodiment discloses an image sensor with an improved light utilization efficiency based on reflective color filters. Since the image sensors may use most of an incident light for forming an image by using reflective color filters, light loss due to light absorption may be reduced. Therefore, light utilization efficiency of the image sensors may be improved while embodying color purity.
Abstract:
Provided is an image sensor including a sensor substrate including a first pixel row and a second pixel row, a spacer layer arranged on the sensor substrate, and a color separating lens array arranged on the spacer layer, in which the color separating lens array includes a first color separating lens array separating, out of incident light, light of a plurality of wavelengths within a first spectral range and condensing the light of the plurality of wavelengths onto a plurality of pixels of the first pixel row and a second color separating lens array separating, out of incident light, light of a plurality of wavelengths within a second spectral range different from the first spectral range and condensing the light of the plurality of wavelengths onto a plurality of pixels of the second pixel row.
Abstract:
An optical sensor including a planar nano-photonic microlens array and an electronic apparatus including the same are provided. The optical sensor may include: a sensor substrate including a plurality of photosensitive cells for sensing light; a filter layer provided on the sensor substrate; and a planar nano-photonic microlens array provided on the filter layer, and including a plurality of planar nano-photonic microlenses, wherein the plurality of planar nano-photonic microlenses are two-dimensionally arranged in a first direction and a second direction that is perpendicular to the first direction, and each of the planar nano-photonic microlenses include nano-structures arranged such that the light transmitting through each of the planar nano-photonic microlenses has a phase profile in which a phase change curve is convex in the first direction and the second direction.