Abstract:
An organic light emitting display device includes a substrate having a non-light emitting region and a light emitting region, a photochromic layer in a path of light that is emitted from the light emitting region and a light blocking layer on the photochromic layer, wherein the light blocking layer comprises a plurality of light blocking patterns that are spaced from each other, the light blocking patterns overlap the light emitting region, and a space between adjacent light blocking patterns exposes the non-light emitting region.
Abstract:
A touch panel and a display device including the same are disclosed. In one aspect, the touch panel includes a destructive interference (DI) unit including a plurality of dielectric layers and a plurality of metal layers that are alternately stacked and a transparent conductive layer formed over the DI unit. The transparent conductive layer includes a plurality of first sensing patterns and one of the metal layers includes a plurality of second sensing patterns and a plurality of non-sensing metal patterns adjacent to and alternately arranged with the second sensing patterns.
Abstract:
An organic light emitting display device according to an exemplary embodiment of the present disclosure includes: a first substrate provided with a thin film transistor layer where a plurality of pixels are formed; a second substrate covering the first substrate; and a sealant formed along edges of the first and second substrates to bond both of the first and second substrates, wherein the sealant is formed above the thin film transistor of the first substrate, the sealant comprises an organic sealant and a protection member formed outside of the organic sealant, and the protection member is formed of a dual layer of an inorganic layer and an elastic member.
Abstract:
A display device includes: a substrate; a pixel defining layer defining a pixel region on the substrate; a first electrode on the pixel region; a light emitting layer on the first electrode; a second electrode on the light emitting layer; a thin film encapsulation layer on the second electrode; a metal pattern on the thin film encapsulation layer and overlapping the pixel defining layer; and a multi-layer thin film layer on the metal pattern and the thin film encapsulation layer.
Abstract:
An organic light emitting display device having a display substrate; a display element layer formed on the display substrate and including a plurality of pixels, a thin film encapsulation layer which covers and protects the display substrate and the display element layer; a function film disposed on the thin film encapsulation layer, a first adhesive layer disposed between the thin film encapsulation layer and the functional film, a window attached onto the functional film which protects the display element layer, and a second adhesive layer disposed between the functional film and the window, in which the first adhesive layer and the second adhesive are formed by deposition, a surface processing is performed, and facing surfaces are adhered with each other.
Abstract:
A method of driving an electronic device includes displaying a plurality of fingerprint recognition icons on a display device configured to perform fingerprint recognition, and releasing a lock state of the display device through a fingerprint authentication process upon determining at least one first fingerprint recognition icon among the plurality of fingerprint recognition icons is touched. The plurality of fingerprint recognition icons include at least one first fingerprint recognition icon configured to support the fingerprint recognition and at least one second fingerprint recognition icon configured to not support the fingerprint recognition.
Abstract:
A display device comprising: a substrate; a plurality of display elements disposed on the substrate; and a diffraction pattern layer disposed on a path of light emitted from the plurality of display elements. The diffraction pattern layer comprises a plurality of diffraction patterns which is disposed with a predetermined pitch, and the plurality of diffraction patterns do not overlap the plurality of display elements; and when a width of a cross section of each of the plurality of diffraction patterns is defined as a length of each diffraction pattern, the predetermined pitch and the length of each diffraction pattern satisfy the following inequation: 0.4≤d1/DP1
Abstract:
A display device includes a substrate, a first display element which is disposed on the substrate, and a plurality of diffraction patterns which are disposed on a path of light emitted from the first display element and arranged along a direction with a first period. when a width of a cross section of one of the plurality of diffraction patterns is defined as a first length, the first period and the first length satisfy Inequality (1): 0.4≤d1/DP1≤1, (1) where DP1 is the first period, and d1 is the first length.
Abstract:
A display device includes a substrate, a first electrode, an organic light-emitting layer, a second electrode, a phase matching layer, and at least one light-absorbing layer. The substrate includes a plurality of pixel regions and a non-pixel region. The non-pixel region is arranged between adjacent pixel regions. The first electrode is arranged in each pixel region. The organic light-emitting layer is arranged on the first electrode. The second electrode is arranged on the organic light-emitting layer. The phase matching layer is arranged on the second electrode. The at least one light-absorbing layer is arranged on the phase matching layer. A thickness of the second electrode in the non-pixel region is different than a thickness of the second electrode in the pixel regions.
Abstract:
A display device, including: a substrate; a first light-emitting element disposed on the substrate; an encapsulation layer disposed on the first light-emitting element; an input sensing layer disposed on the encapsulation layer; and a diffraction pattern layer disposed on the input sensing layer. The diffraction pattern layer may include a plurality of diffraction patterns arranged to have a first period in one direction.