Abstract:
Provided is a display apparatus including a substrate, a display element on the substrate and defining an emission area, a low-reflection layer on the display element and including an inorganic material, a light blocking layer including a first sub-light blocking layer on the low-reflection layer and a second sub-light blocking layer on the first sub-light blocking layer, the light blocking layer having an opening passing through the first sub-light blocking layer and the second sub-light blocking layer to correspond to the emission area, and a reflection control layer on the light blocking layer and filling the opening. The first sub-light blocking layer includes a metal material, and the second sub-light blocking layer includes a metal material and/or a metal oxide.
Abstract:
An optical filter includes a substrate including a plurality of pixel areas spaced apart from each other and a light-blocking area between the plurality of pixel areas, a plurality of color filters arranged on a first surface of the substrate and corresponding to the plurality of pixel areas, and a plurality of conversion layers arranged on the first surface of the substrate and corresponding to the plurality of color filters. Each of the conversion layers includes inclined side surfaces. The optical filter further includes a reflective layer on the inclined side surfaces of each of the plurality of conversion layers. The reflective layer extends to the light-blocking area and is arranged consecutively on two adjacent inclined side surfaces from among the inclined side surfaces of the plurality of conversion layers and the light-blocking area between the two adjacent inclined side surfaces.
Abstract:
An optical filter includes a substrate including a plurality of pixel areas spaced apart from each other and a light-blocking area between the plurality of pixel areas, a plurality of color filters arranged on a first surface of the substrate and corresponding to the plurality of pixel areas, and a plurality of conversion layers arranged on the first surface of the substrate and corresponding to the plurality of color filters. Each of the conversion layers includes inclined side surfaces. The optical filter further includes a reflective layer on the inclined side surfaces of each of the plurality of conversion layers. The reflective layer extends to the light-blocking area and is arranged consecutively on two adjacent inclined side surfaces from among the inclined side surfaces of the plurality of conversion layers and the light-blocking area between the two adjacent inclined side surfaces.
Abstract:
Provided is a liquid crystal display apparatus. The liquid crystal display apparatus may include a first pixel electrode, a second pixel electrode, a common electrode, and a liquid crystal layer. The first pixel electrode is disposed in a first area, and includes a plurality of outer branches spaced apart from each other. The second pixel electrode is disposed in a second area spaced apart from the first area with an electrode gap therebetween and surrounded by the first area, and includes a plurality of middle branch portions spaced apart from each other. An extending direction of the electrode gap forms one of an acute angle or an obtuse angle with an extending direction of each of the outer branch portions, and the extending direction of the electrode gap forms one of an acute angle or an obtuse angle with an extending direction of each of the middle branch portions.
Abstract:
Provided is a liquid crystal display apparatus. The liquid crystal display apparatus may include a first pixel electrode, a second pixel electrode, a common electrode, and a liquid crystal layer. The first pixel electrode is disposed in a first area, and includes a plurality of outer branches spaced apart from each other. The second pixel electrode is disposed in a second area spaced apart from the first area with an electrode gap therebetween and surrounded by the first area, and includes a plurality of middle branch portions spaced apart from each other. An extending direction of the electrode gap forms one of an acute angle or an obtuse angle with an extending direction of each of the outer branch portions, and the extending direction of the electrode gap forms one of an acute angle or an obtuse angle with an extending direction of each of the middle branch portions.