Abstract:
A method of manufacturing an organic light emitting diode (OLED) display device includes: providing a substrate including a display area and a non-display area; forming an organic light emitting diode element in the display area; forming a barrier wall around the display area and spaced apart from the organic light emitting diode element; performing a plasma treatment on the substrate on which the organic light emitting diode element is formed; and forming a thin film encapsulation layer for coating the organic light emitting diode element, wherein forming the thin film encapsulation layer includes: forming at least one inorganic layer; and forming at least one organic layer inwardly of the barrier wall.
Abstract:
An organic light-emitting device and a display apparatus including the organic light-emitting device includes a light emitting layer having one or more host materials having unexpectedly low driving voltage, high efficiency and a long life span.
Abstract:
A method of manufacturing an organic light emitting diode (OLED) display device includes: providing a substrate including a display area and a non-display area; forming an organic light emitting diode element in the display area; forming a barrier wall around the display area and spaced apart from the organic light emitting diode element; performing a plasma treatment on the substrate on which the organic light emitting diode element is formed; and forming a thin film encapsulation layer for coating the organic light emitting diode element, wherein forming the thin film encapsulation layer includes: forming at least one inorganic layer; and forming at least one organic layer inwardly of the barrier wall.
Abstract:
An amine-based compound and an organic light-emitting device including the same, the amine-based compound being represented by Formula 1, below:
Abstract:
An organic light-emitting device includes a first electrode; a second electrode facing the first electrode; and an organic layer between the first electrode and the second electrode, wherein the organic layer includes an emission layer and at least one organometallic compound of Formula 1. An organic light-emitting device including an organometallic compound of Formula 1 may have low driving voltage, high efficiency, and excellent color purity.
Abstract:
An organic light-emitting device includes a first electrode, a second electrode facing the first electrode, and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer. The organic layer includes a first compound represented by one of Formulae 1-1 to 1-3 below and a second compound represented by Formula 2 below: where A1 to A5, B1 to B5, D1 to D5, R1 to R5, R12, R13, R41 to R44, L11, L2, L3, and ba to bi are as defined in the specification.
Abstract:
A method of manufacturing an organic light emitting diode (OLED) display device includes: providing a substrate including a display area and a non-display area; forming an organic light emitting diode element in the display area; forming a barrier wall around the display area and spaced apart from the organic light emitting diode element; performing a plasma treatment on the substrate on which the organic light emitting diode element is formed; and forming a thin film encapsulation layer for coating the organic light emitting diode element, wherein forming the thin film encapsulation layer includes: forming at least one inorganic layer; and forming at least one organic layer inwardly of the barrier wall.
Abstract:
An organic light-emitting device includes a first electrode; a second electrode facing the first electrode; and an organic layer between the first electrode and the second electrode, wherein the organic layer includes an emission layer and at least one organometallic compound of Formula 1. An organic light-emitting device including an organometallic compound of Formula 1 may have low driving voltage, high efficiency, and excellent color purity.
Abstract:
Provided is a light-emitting device including: a first electrode; a second electrode facing the first electrode; and an interlayer between the first electrode and the second electrode and including an emission layer, wherein the emission layer includes a first compound, a second compound, a third compound, a first organometallic compound, and a second organometallic compound. The first compound to the third compound, the first organometallic compound, and the second organometallic compound are respectively as described in the present specification.