Abstract:
An organic light emitting diode, including a first electrode; a second electrode facing the first electrode, the second electrode including magnesium; an emission layer between the first electrode and the second electrode; and an electron injection layer between the second electrode and the emission layer, the electron injection layer including a dipole material including a first component and a second component having different polarities, the dipole material including halide, and a content of the magnesium included in the second electrode being in a range of from 10 to 40 volume %.
Abstract:
An organic light emitting diode, including a first electrode; a second electrode facing the first electrode, the second electrode including magnesium; an emission layer between the first electrode and the second electrode; and an electron injection layer between the second electrode and the emission layer, the electron injection layer including a dipole material including a first component and a second component having different polarities, the dipole material including halide, and a content of the magnesium included in the second electrode being in a range of from 10 to 40 volume %.
Abstract:
An organic light emitting diode, including a first electrode; a second electrode facing the first electrode, the second electrode including magnesium; an emission layer between the first electrode and the second electrode; and an electron injection layer between the second electrode and the emission layer, the electron injection layer including a dipole material including a first component and a second component having different polarities, the dipole material including halide, and a content of the magnesium included in the second electrode being in a range of from 10 to 40 volume %.
Abstract:
An organic light emitting diode and an organic light emitting display device, the organic light emitting diode including a first electrode and a second electrode facing each other; an emission layer between the first electrode and the second electrode; and a hole transport layer between the first electrode and the emission layer, wherein the hole transport layer includes an organic material and a dipole material, the dipole material including a first component and a second component, the first component having a polarity different from that of the second component and the first component and the second component being combined with each other.
Abstract:
An organic light emitting diode (OLED) display according to the present disclosure includes a substrate, a thin film transistor on the substrate, a first electrode on the thin film transistor and electrically coupled to the thin film transistor, an organic emission layer on the first electrode, a second electrode on the organic emission layer, and a capping layer on the second electrode, wherein a thickness of the second electrode is about 65 Å to about 125 Å, and wherein a thickness of the capping layer is about (500*1.88/n) Å to about (700*1.88/n) Å, n being an optical constant of the capping layer.
Abstract:
An organic light emitting diode according to an example embodiment of the present disclosure includes: a first electrode; a second electrode facing the first electrode; an emission layer between the first electrode and the second electrode; and an electron injection layer between the second electrode and the emission layer. The electron injection layer includes a first halogen dipole material based on a transition or post-transition metal I, and a second halogen dipole material based on a metal having a work function of 4.0 eV or less.
Abstract:
An organic light emitting diode display including a substrate, a thin film transistor on the substrate, a first electrode connected to the thin film transistor, a first layer on the first electrode, an emission layer on the first layer, a second layer on the emission layer, and a second electrode on the second layer.
Abstract:
An organic light emitting diode includes: a first electrode; a second electrode, the first electrode and the second electrode facing each other; an emission layer provided between the first electrode and the second electrode; and an electron injection layer provided between the second electrode and the emission layer, wherein at least one of the first electrode and the second electrode includes: a first material that is one of a group-1 metal based halogen dipole material, a group-2 metal based halogen dipole material, a lanthanide metal based halogen dipole material, or a transition, metal based halogen dipole material; and a second material that is a metal reacting to the first material.
Abstract:
An organic light emitting diode display includes: a substrate; an organic light emitting element on the substrate; and a capping layer on the organic light emitting element and including a high refraction layer formed of an inorganic material having a refractive index which is equal to or greater than about 1.7 and equal to or less than about 6.0, wherein the inorganic material includes at least one selected from CuI, thallium iodide (TlI), AgI, CdI2, HgI2, SnI2, PbI2, BiI3, ZnI2, MnI2, FeI2, CoI2, NiI2, aluminum iodide (AlI3), thorium (IV) iodide (ThI4), uranium triiodide (UI3), MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, SnS, PbS, CdS, CaS, ZnS, ZnTe, PbTe, CdTe, SnSe, PbSe, CdSe, CuO, Cu2O, WO3, MoO3, SnO2, Nb2O5, Ag2O, CdO, CoO, Pr2O3, Bi2O3, Fe2O3, AlAs, GaAs, InAs, GaP, InP, AlP, AlSb, GaSb, and InSb.
Abstract:
An organic light emitting diode, including a first electrode and a second electrode facing each other; an emission layer between the first electrode and the second electrode; and a hole injection layer between the first electrode and the emission layer, the hole injection layer including a dipole material including a first component and a second component that have different polarities.