Abstract:
An organic light emitting display device has a display region and a first peripheral region surrounding at least one side of the display region. The organic light emitting display device includes a first substrate a first substrate, a plurality of pixels on the first substrate, the plurality of pixels being included in the display region, at least one of the plurality of pixels including an organic light emitting element, and a driving circuit on the first substrate and in the first peripheral region. At least one of the pixels includes a first transmission portion and at least one light emitting portion, and the first peripheral region includes at least one second transmission portion.
Abstract:
A display device may include a display area for displaying an image. The display device may further include a peripheral area that surrounds the display area. The display device may further include a pixel disposed in the display area. The display device may further include a bus line disposed in the peripheral area and configured to transmit a signal. The display device may further include a connection conductor set electrically connected to the bus line. The display device may further include a branch line electrically connected to the connection conductor set, configured to receive the signal from the bus line, and configured to transmit the signal to the pixel, wherein a portion of the branch line is disposed in the display area.
Abstract:
A display device includes a pixel unit including a plurality of pixels coupled to a plurality of control lines and to a plurality of power lines to commonly receive same control signals and power source, a plurality of inlet pads positioned outside the pixel unit, the plurality of inlet pads being configured to apply the power source to the plurality of power lines, a pad bar electrically coupling the plurality of inlet pads, and a plurality of coupling patterns contacting end portions of the plurality of power lines and corresponding end portions of the pad bar, the plurality of coupling patterns electrically connecting the plurality of power lines and the pad bar, and one or more of the end portions of the pad bar and the ends portions of the plurality of power lines have different contact areas with the plurality of coupling patterns.
Abstract:
A thin film transistor includes a substrate, a semiconductor layer on the substrate, a first insulating layer covering the substrate and the semiconductor layer, a first gate electrode on the first insulating layer and overlapping the semiconductor layer, a second insulating layer covering the first gate electrode and the first insulating layer, a second gate electrode on the second insulating layer and overlapping the semiconductor layer and the first gate electrode, a third insulating layer covering the second gate electrode, a first contact hole defined in the first insulating layer, the second insulating layer and the third insulating layer, and through which a portion of the semiconductor layer is exposed, and a source electrode and a drain electrode connected to the semiconductor layer through the first contact hole.
Abstract:
An organic light emitting display device includes a substrate including a sub-pixel region and a transparent region, a first semiconductor element in the sub-pixel region on the substrate, a second semiconductor element overlapping at least a portion of the sub-pixel region on the substrate, and is spaced apart from the first semiconductor element, a first lower electrode disposed in the sub-pixel region on the first semiconductor element and electrically connected to the first semiconductor element, a second lower electrode disposed in the transparent region on the substrate and electrically connected to the second semiconductor element, a first light emitting layer on the first lower electrode, a second light emitting layer on the second lower electrode, and an upper electrode on the first and second light emitting layers where second lower electrode has a thickness that is less than a thickness of the first lower electrode, and transmits a light.
Abstract:
A display panel is disclosed. The display panel includes a substrate, a plurality of first unit pixel and a plurality of second unit pixel. The substrate includes a first region and a second region extending in a first direction. The plurality of first unit pixels is disposed in the first region of the substrate. The first unit pixel has a first area. The plurality of second unit pixel is disposed in the second region of the substrate. The second unit pixel has a second area which is smaller than the first area.
Abstract:
A display device includes a display panel, a data driver, a scan driver, and a power supply. The display panel includes power voltage lines and pixels coupled to data lines and scan lines. The data driver supplies data voltages to the data lines. The scan driver provides scan signals to the scan lines. The power supply supplies a power voltage to the power voltage lines. The display panel includes a compensation resistance coupled between s pixels and one of the power voltage lines.
Abstract:
A light emitting display apparatus includes a plurality of emission pixels in an active area, a plurality of dummy pixels in a dummy area; and a plurality of repair lines, each connecting an emission pixel of the emission pixels to a dummy pixel of the dummy pixels, wherein a data signal is simultaneously provided to the emission pixel and the dummy pixel which are connected to the repair line so that the emission pixel emits light.
Abstract:
A display device according to an embodiment of the present invention includes: a pixel including a first subpixel and a second subpixel; a first signal line connected to the first subpixel and transmitting a first signal; a second signal line connected to the second subpixel and transmitting a second signal; a third signal line intersecting the first and the second signal lines, connected to at least one of the first and the second subpixels, and transmitting a third signal; and a fourth signal line intersecting the first and the second signal lines and transmitting a fourth signal, wherein the first subpixel and the second subpixel are supplied with data voltages having different magnitude, and the data voltages applied to the first and the second subpixels are originated from a single image information.
Abstract:
A thin film transistor array panel, according to an embodiment of the present invention, includes a first data line, a second data line neighboring the first data line, a transistor disposed in a region between the first data line and the second data line, and a pixel electrode disposed close to the second data line among the first and second data lines. An extension of the pixel electrode may cross the second data line, thereby being connected to the transistor. Accordingly, it may not be necessary to use an additional connecting member between the pixel electrode and the data line such that the process may be shortened and the structure of the wiring may be simplified. Also, the spatial utility may be increased to improve the degree of integration.