Abstract:
A color conversion panel according to an exemplary embodiment of the present invention includes an insulation substrate, a plurality of color conversion media layers on the insulation substrate and configured to emit different lights, and a light blocking member between adjacent ones of the color conversion media layers, wherein a cross-section of one of the color conversion media layers is inversely tapered when compared to a cross section of another one of the color conversion media layers.
Abstract:
A liquid crystal display is presented. The display includes: a substrate having an upper surface and a lower surface; a lower polarizing plate positioned on the lower surface of the substrate; a thin film transistor positioned on the upper surface of the substrate; a pixel electrode connected to the thin film transistor; a roof layer covering a plurality of microcavities formed on the pixel electrode and including an organic material; a liquid crystal layer interposed in the microcavities; and a upper polarizing plate positioned on an upper surface of the liquid crystal layer, in which the lower polarizing plate has a thickness that is larger than a thickness of the upper polarizing plate.
Abstract:
An exemplary embodiment provides a liquid crystal display including: a substrate configured to include a display area and a peripheral area; a thin film transistor disposed on the substrate; a pixel electrode connected to the thin film transistor; a roof layer disposed to face the pixel electrode; a capping layer disposed on the roof layer; and a blocking film disposed in the peripheral area to surround a lateral surface of the capping layer, wherein a plurality of microcavities are formed between the pixel electrode and the roof layer in the display area, and the microcavities form a liquid crystal layer including a liquid crystal material, wherein a level of a top surface of the blocking film is higher than that of a top surface of the liquid crystal layer.
Abstract:
An exemplary embodiment of the present inventive concept provides a display device including: an insulation substrate; a thin film transistor disposed on the substrate; a common electrode and a pixel electrode disposed on the thin film transistor to overlap each other with an insulating layer therebetween; a roof layer formed to be spaced apart from the pixel electrode with a microcavity therebetween; and a liquid crystal layer filling the microcavity. A lower portion of the roof layer includes a valley where a thickness of the roof layer is increased and a peak where the thickness of the roof layer is reduced.
Abstract:
A liquid crystal display according to the present inventive concept includes: a substrate; a gate line and a data line crossing each other formed on the substrate; a thin film transistor connected to the gate line and the data line; a pixel electrode connected to the thin film transistor and having a slit at a center; a liquid crystal layer filling a plurality of microcavities positioned on the pixel electrode; a common electrode positioned on the liquid crystal layer; and a roof layer formed on the common electrode and having an oblique portion formed to be inclined at both outer sides of the microcavities.
Abstract:
A display device is provided. The display device includes: a substrate; a thin film transistor disposed on the substrate; a pixel electrode connected to the thin film transistor; a first common electrode disposed on the pixel electrode, and spaced apart from the pixel electrode with a microcavity disposed therebetween; an injection hole exposing a portion of the microcavity; a liquid crystal layer filling the microcavity; an encapsulation layer covering the injection hole so as to encapsulate the microcavity; and a second common electrode disposed on the first common electrode and the encapsulation layer, wherein the second common electrode is connected to the first common electrode.