Abstract:
An organic light-emitting device includes an organic layer including an emission layer between a first electrode and the second electrode, and a hole transport region including an auxiliary layer between the first electrode and the emission layer, the hole transport region. The auxiliary layer includes a first material and a second material that satisfy Equations 1-1 and 1-2: 0 eV 0 eV wherein in Equation 1-1 and 1-2, EH1 is a highest occupied molecular orbital energy (HOMO energy) of the first material; EL1 is a lowest unoccupied molecular orbital energy (LUMO energy) of the first material; EH2 is a HOMO energy of the second material; and EL2 is a LUMO energy of the second material.
Abstract:
An organic light-emitting device including a first electrode; a second electrode facing the first electrode; an organic layer between the first electrode and the second electrode, the organic layer including an emission layer, and a light-efficiency improvement layer that includes at least one selected from a first light-efficiency improvement layer and a second light-efficiency improvement layer, wherein the first light-efficiency improvement layer is disposed in a path of light that is generated in the emission layer and emitted toward an outside of the organic light-emitting device through the first electrode; the second light-efficiency improvement layer is disposed in a path of light that is generated in the emission layer and emitted toward the outside of the organic light-emitting device through the second electrode; and the light-efficiency improvement layer includes a phosphine oxide compound represented by the following Formula 1: