Abstract:
A display device includes a light blocking panel; a transparent display panel; a three-dimensional (3D) panel; a mask generating unit that generates a first mask from a difference between a left eye image and a right eye image that indicates whether or not viewpoint disparity is generated in each block of the 3D panel, and a second mask indicating whether each block of the light blocking panel is transparent or opaque; and an image processing unit that generates the display image from the left and right eye images and the first mask, wherein the display image is divided into a first region first region that includes an interlaced image generated by alternately arranging left eye image pixels and right eye image pixels, and a second region that includes a 2D image generated from one or both of the left eye image and the right eye image.
Abstract:
A display device according to an exemplary embodiment of the present disclosure includes: a liquid crystal lens panel positioned on a display panel; and a reflective polarizer positioned between the display panel and the liquid crystal lens panel, wherein the liquid crystal lens panel includes a lower substrate and an upper substrate facing each other, a lower lens electrode formed on the lower substrate, where the lower lens electrode includes a plurality of separate lower lens electrodes formed into lower lens electrode groups, where a width of each separate lower lens electrode becomes wider closer to a center of the lower lens electrode group; an upper lens electrode formed on the upper substrate, and a liquid crystal layer interposed between the lower substrate and the upper substrate. The liquid crystal lens panel is configured to be operated in a 2D mode, a 3D mode, or a mirror mode.
Abstract:
A display device includes a display panel configured to receive a first-frame image signal for displaying a first-frame image in a first frame. The display panel is further configured to receive a second-frame image signal for displaying a second-frame image in a second frame that immediately follows the first frame such that the display panel appears to display a transition region associated with a boundary between a portion of the first-frame image and a portion of the second-frame image and moving in a moving direction. The display device further includes an optical effect layer and electrode sets. The electrode sets respectively overlap different portions of the optical effect layer and are configured for sequentially starting affecting the different portions of the optical effect layer such that the optical effect layer appears to display a light-blocking section that moves in the moving direction and overlaps the transition region.
Abstract:
A display device includes a display panel configured to receive a first-frame image signal for displaying a first-frame image in a first frame. The display panel is further configured to receive a second-frame image signal for displaying a second-frame image in a second frame that immediately follows the first frame such that the display panel appears to display a transition region associated with a boudary between a portion of the first-frame image and a portion of the second-frame image and moving in a moving direction. The display device further includes an optical effect layer and electrode sets. The electrode sets respectively overlap different portions of the optical effect layer and are configured for sequentially starting affecting the different portions of the optical effect layer such that the optical effect layer appears to display a light-blocking section that moves in the moving direction and overlaps the transition region.
Abstract:
A display device includes a substrate, a pixel electrode disposed on the substrate, a bank layer which is disposed on the pixel electrode and in which a pixel opening overlapping the pixel electrode is defined, an encapsulation layer disposed on the pixel electrode and the bank layer, a sensing electrode disposed on the encapsulation layer, a first insulating layer which is disposed on the sensing electrode and in which an opening overlapping the pixel opening is defined, and a second insulating layer which is disposed on the first insulating layer and has a higher refractive index than a refractive index of the first insulating layer, where a side inclination angle of the first insulating layer in the opening of the first insulating layer is different depending on a position of the opening of the first insulating layer.
Abstract:
A display device includes: a pixel defining layer on a pixel electrode, and having a pixel opening exposing a portion of the pixel electrode; an emission layer on the pixel electrode at the pixel opening; an opposite electrode on the emission layer; a first refractive layer on the opposite electrode, and having a first refractive index, and a refractive opening that overlaps with the pixel opening; and a second refractive layer on the first refractive layer, and having a second refractive index greater than the first refractive index. A minimum gap between the pixel opening and the refractive opening in a plan view is greater than or equal to −1 μm and less than or equal to 2.5 μm, and a width of the refractive opening is less than a width of the pixel opening when the minimum gap is negative, and greater when the minimum gap is positive.
Abstract:
A display device includes a substrate and a plurality of pixels positioned on the substrate. Each pixel includes a first electrode, a partition wall including a first opening overlapping the first electrode, and a low refractive layer including a second opening overlapping the first opening. The plurality of pixels includes a first plurality of pixels having a first gap between an edge of the first opening and an edge of the second opening and a second plurality of pixels having a second gap between an edge of the first opening and an edge of the second opening. The first gap and the second gap have different lengths from each other. At least one of the first plurality of pixels and at least one of the second plurality of pixels emit light of the same color as each other.
Abstract:
A display device according to embodiments includes: a display panel that includes a display area that includes a partition layer that includes a first opening through which light is emitted from an organic light emitting diode and a peripheral area around the display area; a touch electrode disposed on the display panel a touch electrode passivation layer that covers the touch electrode and includes a second opening that corresponds to the first opening; and a high refractive index layer that covers the touch electrode passivation layer and the second opening. The touch electrode passivation layer includes an open region formed in a portion that corresponds to the peripheral area, and the touch electrode passivation layer is not formed in the open region.
Abstract:
An organic light emitting diode display including a substrate, a first electrode disposed on the substrate, a second electrode disposed on the substrate and separated from the first electrode, a pixel defining layer disposed on the first electrode and the second electrode, a first organic emission layer disposed on the first electrode corresponding to the first opening, a second organic emission layer disposed on the second electrode corresponding to the second opening, and a common electrode disposed on the first organic emission layer and the second organic emission layer. The first electrode includes a first dent portion. The second electrode includes a second dent portion having a different size from the first dent portion. The pixel defining layer includes a first opening exposing the first electrode corresponding to the first dent portion and a second opening exposing the second electrode corresponding to the second dent portion.
Abstract:
A display apparatus includes a display panel, a light source part and a directional light projecting element. The display panel displays a first image during a first subframe and a different second image during a second subframe. The light source part provides light to the display panel. The directional light projecting element is disposed between the display panel and the light source part. The directional light projecting element includes a barrier part and a lens part disposed above the barrier part. The barrier part has a plurality of barriers defined as a plurality of first electrodes and a plurality of second electrodes crossing the first electrodes. The lens part has a plurality of lenses disposed in a first direction and a second direction crossing the first direction. Each of the lenses corresponds to a subset of plural lenses among the plurality of the barriers.