Abstract:
An embodiment device for synchronizing the emission and the reception of a light signal for a time-of-flight sensor comprises a power-control circuit configured to generate and transmit a power signal based on a control signal for controlling the sensor, the power signal being configured to supply power to an array of pixels of the sensor, a production module for producing a synchronization signal, which module is configured to produce the synchronization signal based on the control signal, and a switch configured to supply power to a light source of a device for emitting the light signal, the production module being further configured to transmit the synchronization signal to the switch such that the time taken to produce and transmit the synchronization signal and the time taken to generate and transmit the power signal are identical.
Abstract:
In an embodiment, a method includes: receiving data signals from a plurality of pixels of an array of pixels; generating a plurality of signal-to-noise ratios by determining signal-to-noise ratios for each respective pixel of the plurality of pixels on the basis of the data signals received from the respective pixel; and filtering the data signals received from each pixel of the plurality of pixels by using an adaptive filter configured on the basis of the plurality of the signal-to-noise ratios to generate filtered data signals.
Abstract:
A circuit includes a pixel structure having a photo sensitive element and a read transistor. The read transistor includes a first load path terminal coupled to the photo sensitive element, and a second load path terminal coupled to a voltage bus. The circuit also includes a first transistor having a third load path terminal coupled to a power supply node, and a fourth load path terminal configured to be coupled to a current source. The circuit further includes a first control switch coupled between the voltage bus and the fourth load path terminal of the first transistor.
Abstract:
A method for reading a pixel, including at least two integration periods, at least one of said periods including at least one integration sub-period, wherein an output value of the pixel is determined by taking into account the amounts of photogenerated charges contained in the pixel at the end of each of said periods and the amount of photogenerated charges stored in a photodiode of the pixel beyond a threshold during said at least one sub-period.
Abstract:
The present disclosure relates to a method for adjusting a bias voltage of a SPAD photodiode, comprising successive steps of: applying to the photodiode a first test bias voltage lower than a normal bias voltage applied to the photodiode in a normal operating mode, subjecting the photodiode to photons, reading a first avalanche triggering signal of the photodiode, applying to the photodiode a second test bias voltage, different from the first test bias voltage, subjecting the photodiode to photons, reading a second avalanche triggering signal of the photodiode, increasing the normal bias voltage if the first and second signals indicate that the photodiode did not avalanche trigger, and reducing the normal bias voltage if the first and second signals indicate that the photodiode did avalanche trigger.