AUTOMATIC METHOD AND SYSTEM FOR VESSEL REFINE SEGMENTATION IN BIOMEDICAL IMAGES USING TREE STRUCTURE BASED DEEP LEARNING MODEL

    公开(公告)号:US20190325579A1

    公开(公告)日:2019-10-24

    申请号:US16392516

    申请日:2019-04-23

    Abstract: Embodiments of the disclosure provide systems and methods for segmenting a biomedical image including at least one tree structure object. The system includes a communication interface configured to receive the biomedical image and a learning model. The biomedical image is acquired by an image acquisition device. The system further includes at least one processor configured to extract a plurality of image patches from the biomedical image and apply the learning model to the plurality of image patches to segment the biomedical image. The learning model includes a convolutional network configured to process the plurality of image patches to construct respective feature maps and a tree structure network configured to process the feature maps collectively to obtain a segmentation mask for the tree structure object. The tree structure network models a spatial constraint of the plurality of image patches.

    Method and system for disease quantification of anatomical structures

    公开(公告)号:US12119117B2

    公开(公告)日:2024-10-15

    申请号:US17726307

    申请日:2022-04-21

    Abstract: This disclosure discloses a method and system for predicting disease quantification parameters for an anatomical structure. The method includes extracting a centerline structure based on a medical image. The method further includes predicting the disease quantification parameter for each sampling point on the extracted centerline structure by using a GNN, with each node corresponds to a sampling point on the extracted centerline structure and each edge corresponds to a spatial constraint relationship between the sampling points. For each node, a local feature is extracted based on the image patch for the corresponding sampling point by using a local feature encoder, and a global feature is extracted by using a global feature encoder based on a set of image patches for a set of sampling points, which include the corresponding sampling point and have a spatial constraint relationship defined by the centerline structure. Then, an embed feature is obtained based on both the local feature and the global feature and input into to the node. The method is able to integrate local and global consideration factors of the sampling points into the GNN to improve the prediction accuracy.

    Method and system for anatomical labels generation

    公开(公告)号:US12094596B2

    公开(公告)日:2024-09-17

    申请号:US17726039

    申请日:2022-04-21

    CPC classification number: G16H30/40 G06N3/045 G06V10/82 G06V20/70

    Abstract: The present disclosure relates to a method and a system for generating anatomical labels of an anatomical structure. The method includes receiving an anatomical structure with an extracted centerline, or a medical image containing the anatomical structure with the extracted centerline; and predicting the anatomical labels of the anatomical structure based on the centerline of the anatomical structure, by utilizing a trained deep learning network. The deep learning network includes a branched network, a Graph Neural Network, a Recurrent Neural Network and a Probability Graph Model, which are connected sequentially in series. The branched network includes at least two branch networks in parallel. The method in the disclosure can automatically generate the anatomical labels of the whole anatomical structure in medical image end to end and provide high prediction accuracy and reliability.

    Systems and methods for determining blood vessel conditions

    公开(公告)号:US11538161B2

    公开(公告)日:2022-12-27

    申请号:US17015070

    申请日:2020-09-08

    Abstract: The disclosure relates to systems and methods for evaluating a blood vessel. The method includes receiving image data of the blood vessel acquired by an image acquisition device, and predicting, by a processor, blood vessel condition parameters of the blood vessel by applying a deep learning model to the acquired image data of the blood vessel. The deep learning model maps a sequence of image patches on the blood vessel to blood vessel condition parameters on the blood vessel, where in the mapping the entire sequence of image patches contribute to the blood vessel condition parameters. The method further includes providing the blood vessel condition parameters of the blood vessel for evaluating the blood vessel.

Patent Agency Ranking