-
公开(公告)号:US12026881B2
公开(公告)日:2024-07-02
申请号:US17567458
申请日:2022-01-03
Applicant: SHENZHEN KEYA MEDICAL TECHNOLOGY CORPORATION
Inventor: Bin Kong , Youbing Yin , Xin Wang , Yi Lu , Haoyu Yang , Junjie Bai , Qi Song
IPC: G06T7/12 , G06F18/213 , G06F18/214 , G06T7/00 , G06T7/73 , G06V10/44
CPC classification number: G06T7/0012 , G06F18/213 , G06F18/214 , G06T7/75 , G06V10/44 , G06T2207/20081 , G06T2207/30104 , G06V2201/03
Abstract: Embodiments of the disclosure provide methods and systems for joint abnormality detection and physiological condition estimation from a medical image. The exemplary method may include receiving, by at least one processor, the medical image acquired by an image acquisition device. The medical image includes an anatomical structure. The method may further include applying, by the at least one processor, a joint learning model to determine an abnormality condition and a physiological parameter of the anatomical structure jointly based on the medical image. The joint learning model satisfies a predetermined constraint relationship between the abnormality condition and the physiological parameter.
-
公开(公告)号:US20220215535A1
公开(公告)日:2022-07-07
申请号:US17567458
申请日:2022-01-03
Applicant: SHENZHEN KEYA MEDICAL TECHNOLOGY CORPORATION
Inventor: Bin Kong , Youbing Yin , Xin Wang , Yi Lu , Haoyu Yang , Junjie Bai , Qi Song
Abstract: Embodiments of the disclosure provide methods and systems for joint abnormality detection and physiological condition estimation from a medical image. The exemplary method may include receiving, by at least one processor, the medical image acquired by an image acquisition device. The medical image includes an anatomical structure. The method may further include applying, by the at least one processor, a joint learning model to determine an abnormality condition and a physiological parameter of the anatomical structure jointly based on the medical image. The joint learning model satisfies a predetermined constraint relationship between the abnormality condition and the physiological parameter.
-
公开(公告)号:US20220215958A1
公开(公告)日:2022-07-07
申请号:US17568084
申请日:2022-01-04
Applicant: SHENZHEN KEYA MEDICAL TECHNOLOGY CORPORATION
Inventor: Bin Kong , Youbing Yin , Xin Wang , Yi Lu , Haoyu Yang , Junjie Bai , Qi Song
Abstract: The present disclosure relates to training methods for a machine learning model for physiological analysis. The training method may include receiving training data including a first dataset of labeled data of a physiological-related parameter and a second dataset of weakly-labeled data of the physiological-related parameter. The training method further includes training, by at least one processor, an initial machine learning model using the first dataset, and applying, by the at least one processor, the initial machine learning model to the second dataset to generate a third dataset of pseudo-labeled data of the physiological-related parameter. The training method also includes training, by the at least one processor, the machine learning model based on the first dataset and the third dataset, and providing the trained machine learning model for predicting the physiological-related parameter. Thereby, the weakly-labeled dataset may be sufficiently utilized in training of the machine learning model and improve ts p iformance.
-
-