Abstract:
A thermoplastic composition comprising a compatibilized blend of poly(arylene ether) and polyamide; a reinforcing fiber; and an electrically conductive filler. Greater than 50 weight percent of the polyamide, based on the total weight of the polyamide, is polyamide-6. The thermoplastic composition is useful in articles that are painted by electrostatic painting.
Abstract:
A thermoplastic composition comprising a compatibilized blend of poly(arylene ether) and polyamide; a reinforcing fiber; and an electrically conductive filler. Greater than 50 weight percent of the polyamide, based on the total weight of the polyamide, is polyamide-6. The thermoplastic composition is useful in articles that are painted by electrostatic painting.
Abstract:
The present invention relates to methods to improve the dampening characteristics of compositions and the improved compositions. The compositions made by the method comprises a polymer system selected from the group consisting of immiscible polymer blends, miscible polymer blends, copolymers, thermoplastic polymers and thermosetting polymers, and a block copolymer comprising: at least one block derived from aromatic vinyl units and at least one block derived from at least isoprene and a vinyl aromatic monomer and optionally butadiene, and having a glass transition temperature of at least 10° C.
Abstract:
A thermoplastic composition comprises a poly(arylene ether), a polyamide, a metal stearate and a polyolefin comprising functional groups reactive with the polyamide.
Abstract:
Inclusion of relatively small amounts of organic ionic species, such as calcium stearate, in the preparation of an electrically conductive polymer composite composition provides a composition having enhanced electrical properties relative to the composite composition lacking the added organic ionic species. As a result of this enhancement, normally insulating materials which rely upon a conductive filler to render them electrically conductive, can be made to achieve a given level of conductivity using less of the conductive filler than would otherwise be required. As a result, the adverse effects of the conductive filler on the polymer's physical properties can be minimized while maintaining a high level of electrical conductivity.
Abstract:
A flame retardant polyamide fiber is prepared from a composition containing specific amounts of a polyamide, a poly(phenylene ether), a flame retardant that includes a metal dialkylphosphinate, and a compatibilizing agent. The composition used to form the fiber can be prepared in a process that includes melt blending a portion of the polyamide with all the other ingredients to form an intermediate composition, and then melt blending the intermediate composition with the remainder of the polyamide. The composition has small disperse phase particles that facilitate its use to melt spin fibers.
Abstract:
A flame retardant polyamide fiber is prepared from a composition containing specific amounts of a polyamide, a poly(phenylene ether)-polysiloxane block copolymer reaction product, a flame retardant that includes a metal dialkylphosphinate, and a compatibilizing agent. The composition used to form the fiber can be prepared in a process that includes melt blending a portion of the polyamide with all the other ingredients to form an intermediate composition, and then melt blending the intermediate composition with the remainder of the polyamide. The composition has small disperse phase particles that facilitate its use to melt spin fibers.
Abstract:
A piston guide ring for use in a piston-cylinder assembly includes a compatibilized polyamide-poly(arylene ether) blend. The compatibilized polyamide-poly(arylene ether) blend includes about 35 to about 95 parts by weight polyamide and about 5 to about 65 parts by weight poly(arylene ether), based on 100 parts by weight total of the polyamide and the poly(arylene ether). The piston guide rings provide improved compressive strength at elevated operating temperatures, more isotropic mold shrinkage, and reduced moisture absorption compared to piston guide rings prepared from polyamide.
Abstract:
Disclosed herein is a masterbatch comprising the reaction product of 75 to 94.5 weight percent of a poly(arylene ether), 5 to 24.5 weight percent of a polyamide and 0.5 to 2.5 weight percent of citric acid, wherein weight percent is based on the combined weight of the poly(arylene ether), polyamide and citric acid. Methods of making and using the masterbatch are also described.
Abstract:
Disclosed herein is a masterbatch comprising the reaction product of 75 to 94.5 weight percent of a poly(arylene ether), 5 to 24.5 weight percent of a polyamide and 0.5 to 2.5 weight percent of citric acid, wherein weight percent is based on the combined weight of the poly(arylene ether), polyamide and citric acid. Methods of making and using the masterbatch are also described.