Abstract:
A Code-Division Multiple Access (CDMA) receiver is disclosed which removes the pilot signal from the received signal. The pilot signal is defined by its multipath parameters (amplitudes, phase shift and delays) and its signature sequence. Since this information is known at the user's receiver terminal (i.e., handset), the pilot signals of the interfering multipath components of the baseband received signal are detected and removed prior to demodulation of the desired multipath component. The pilot signal may be cancelled prior to or following the data accumulation stage.
Abstract:
A Multi-Code (MC) Code Division Multiple Access (CDMA) receiver receives N (where N>1) encoded signal channels over multiple air signal paths. In the MC-CDMA receiver, once a timing correlator means has recovered the timing and control signals for the data signal received over any particular signal path, those timing and control signals are utilized by each of the N data (second type) correlator means for decoding and despreading an associated one of the N data signal channels received over that path.
Abstract:
The present invention concerns the efficient use of the radio spectrum in wireless communications. Channel occupancy data and channel availability data concerning a specific base station and its neighbors are used to assign frequency channels to mobile units and/or base stations. The channel occupancy and availability data may be located at a base station or at a mobile switching center. Channels are preferably assigned as channel pairs.
Abstract:
A code division multiple access system provides a way of allocating an increased data rate to a requesting mobile station. A mobile station requesting a data rate in excess of the basic data rate sends received pilot strength data for its base station and base stations in adjacent cells. The received pilot strength data is used to determine an increased data rate to be assigned to the requesting mobile station. One feature assigns an increased data rate based on the difference in the maximum received received pilot strength data from a non-active base station (one not in connection with the mobile station) and the maximum received pilot strength data from an active base station (one in connection with the mobile station). Yet another feature utilizes a series of threshold levels, each pair of levels associated with a different permitted data rate. Using the received pilot strength data, a data rate is determined which satisfies all adjacent cell interference concerns. Another feature uses average adjacent cell capacity loads rather than threshold levels, together with the received pilot strength data, to determine the appropriate increased data rate to be assigned to a user requesting an increased data rate.
Abstract:
Co-Existence Dynamic Channel Assignment (DCA) techniques for overlay macrocellular systems facilitate the coexistence of embedded autonomous underlay microcellular (e.g., indoor) systems. The Co-existence of the two systems without excessive mutual interference is achieved through statistical systematic exclusion of predefined subsets of the universal channel set from the dynamic assignment to the overlay macrocells. The sets of channels are made available to the underlay systems. The exclusion is done with minimal DCA performance degradation.
Abstract:
Co-Existence Dynamic Channel Assignment (DCA) techniques for overlay macrocellular systems facilitate the coexistence of embedded autonomous underlay microcellular (e.g., indoor) systems. The co-existence of the two systems without excessive mutual interference is achieved through systematic deterministic exclusion of predefined subsets of the universal channel set from the dynamic assignment to the overlay macrocells. The sets of channels are made available to the underlay systems. The exclusion is done with minimal DCA performance degradation. Multiple deterministic exclusions methods are described.
Abstract:
A Multi-Code (MC) Code Division Multiple Access (CDMA) receiver receives N (where N>1) encoded signal channels over multiple air signal paths. The MC-CDMA receiver receives and demodulates the N encoded signal channels into N signal samples and includes a common circuit for time-sharing an accumulator, for accumulating the N signal samples, among a plurality of second correlators. Each of the plurality of second correlator means utilizes the time-shared accumulator to accumulate samples from each of the N signals which are then decoded into an associated one of the N signal channels.