Abstract:
A method of generating metadata includes using at least one digital image to select a plurality of objects, wherein the at least one digital image depicts the plurality of objects in relation to a physical space. The method also includes, by at least one processor and based on information indicating positions of the selected objects in a location space, producing metadata that identifies one among a plurality of candidate geometrical arrangements of the selected objects.
Abstract:
A method performed by an electronic device is described. The method includes interleaving multiple input image channels to produce an interleaved multi-channel input. The method also includes loading the interleaved multi-channel input to a single-instruction multiple data (SIMD) processor. The method further includes convolving the interleaved multi-channel input with a multi-channel filter.
Abstract:
A method for object classification by an electronic device is described. The method includes obtaining an image frame that includes an object. The method also includes determining samples from the image frame. Each of the samples represents a multidimensional feature vector. The method further includes adding the samples to a training set for the image frame. The method additionally includes pruning one or more samples from the training set to produce a pruned training set. One or more non-support vector negative samples are pruned first. One or more non-support vector positive samples are pruned second if necessary to avoid exceeding a sample number threshold. One or more support vector samples are pruned third if necessary to avoid exceeding the sample number threshold. The method also includes updating classifier model weights based on the pruned training set.
Abstract:
A method performed by an electronic device is described. The method includes determining a local motion pattern by determining a set of local motion vectors within a region of interest between a previous frame and a current frame. The method also includes determining a global motion pattern by determining a set of global motion vectors between the previous frame and the current frame. The method further includes calculating a separation metric based on the local motion pattern and the global motion pattern. The separation metric indicates a motion difference between the local motion pattern and the global motion pattern. The method additionally includes tracking an object based on the separation metric.
Abstract:
A method for image scanning by an electronic device is described. The method includes obtaining an image pyramid including a plurality of scale levels and at least a first pyramid level for a frame. The method also includes providing a scanning window. The method further includes scanning at least two of the plurality of scale levels of the frame at a plurality of scanning window locations. A number of scanning window locations is equal for each scale level of the at least two scale levels of the first pyramid level.
Abstract:
A method for object classification by an electronic device is described. The method includes obtaining an image frame that includes an object. The method also includes determining samples from the image frame. Each of the samples represents a multidimensional feature vector. The method further includes adding the samples to a training set for the image frame. The method additionally includes pruning one or more samples from the training set to produce a pruned training set. One or more non-support vector negative samples are pruned first. One or more non-support vector positive samples are pruned second if necessary to avoid exceeding a sample number threshold. One or more support vector samples are pruned third if necessary to avoid exceeding the sample number threshold. The method also includes updating classifier model weights based on the pruned training set.
Abstract:
A method of generating metadata includes using at least one digital image to select a plurality of objects, wherein the at least one digital image depicts the plurality of objects in relation to a physical space. The method also includes, by at least one processor and based on information indicating positions of the selected objects in a location space, producing metadata that identifies one among a plurality of candidate geometrical arrangements of the selected objects.
Abstract:
A method of generating a temporal saliency map is disclosed. In a particular embodiment, the method includes receiving an object bounding box from an object tracker. The method includes cropping a video frame based at least in part on the object bounding box to generate a cropped image. The method further includes performing spatial dual segmentation on the cropped image to generate an initial mask and performing temporal mask refinement on the initial mask to generate a refined mask. The method also includes generating a temporal saliency map based at least in part on the refined mask.
Abstract:
A method for determining a region of an image is described. The method includes presenting an image of a scene including one or more objects. The method also includes receiving an input selecting a single point on the image corresponding to a target object. The method further includes obtaining a motion mask based on the image. The motion mask indicates a local motion section and a global motion section of the image. The method further includes determining a region in the image based on the selected point and the motion mask.
Abstract:
An electronic device is described. The electronic device includes a processor. The processor is configured to obtain a plurality of images. The processor is also configured to obtain global motion information indicating global motion between at least two of the plurality of images. The processor is further configured to obtain object tracking information indicating motion of a tracked object between the at least two of the plurality of images. The processor is additionally configured to perform automatic zoom based on the global motion information and the object tracking information. Performing automatic zoom produces a zoom region including the tracked object. The processor is configured to determine a motion response speed for the zoom region based on a location of the tracked object within the zoom region.