Abstract:
Systems and methodologies are described herein that facilitate efficient transfer of quality of service (QoS) context during inter-radio access technology (RAT) handovers. In particular, techniques are described herein for establishing rules for whether a user equipment unit (UE) or an associated network should establish QoS for a mixed-mode application, identifying flow to bearer mappings when translating QoS across an inter-RAT handover, mapping QoS parameters of respective RATs, mitigating QoS depreciation upon multiple handovers, performing one or more actions if QoS is not acceptable in a new RAT, maintaining QoS during tunnel mode, and handling scenarios in which a UE moves between a RAT using network-initiated QoS and a RAT using UE-initiated QoS.
Abstract:
A method includes receiving a data packet from a data interface and comparing an Internet Protocol (IP) address of the data interface to a destination IP address associated with the packet. Further, the method includes dropping the data packet when the IP address of the data interface does not match the destination IP address.
Abstract:
Aspects disclosed in the detailed description include power saving techniques in computing devices. In particular, as data is received by a modem processor in a computing device, the data is held until the expiration of a modem timer. The data is then passed to an application processor in the computing device over a peripheral component interconnect express (PCIe) interconnectivity bus. On receipt of the data from the modem processor, the application processor sends data held by the application processor to the modem processor over the PCIe interconnectivity bus. The application processor also has an uplink timer. If no data is received from the modem processor before expiration of the uplink timer, the application processor sends any collected data to the modem processor at expiration of the uplink timer. However, if data is received from the modem processor, the uplink timer is reset.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communications and, more particularly, to methods and apparatus for utilizing a control protocol to establish multiple packet data network (PDN) connections through a trusted wide area network (TWAN). Techniques are provided for expanding mobile network capacity by offloading traffic from wireless wide area networks (WWAN) to other types of networks, including wireless local area networks (WLAN).
Abstract:
Aspects of the present disclosure provide methods and apparatus for offloading checksum processing in a user equipment (UE) (e.g., from an application processor to a modem processor). Such offloading may speed up packet processing, increase data rate, and/or free up resources of the application processor for other tasks.
Abstract:
A method of transmitting and receiving data from a multi-homing network device to a data network is disclosed and includes defining a network policy and transmitting the network policy to a routing module. Further, the method includes receiving a route scope from the routing module. The route scope identifies a subset of data interfaces to the data network that satisfy the network policy wherein the subset of data interfaces are selected from a set of available data interfaces and wherein the subset of data interfaces includes at least one data interface.