Abstract:
Techniques provided herein are directed toward enabling on-device learning to create user-specific movement models that can be used for dead reckoning. Because these moving models are user-specific, they can be later used to identify user-specific motions in a manner that provides for a dead reckoning location estimation. In some embodiments, these models can be focused on pedestrian movement, based on the repetitive motion that occurs when a user takes a stride (walking, jogging, running, etc.) or other repetitive motion (swimming, riding a horse, etc.).
Abstract:
The disclosure relates to estimating an initial position and navigation state associated with a vehicle using odometry and/or other data obtained from the vehicle to support dead reckoning at start-up. In particular, a last known position and last known heading at a first odometer value associated with the vehicle may be stored and compared to a current odometer value after linking a mobile device with the vehicle. The last known position and last known heading may be used to estimate the initial position and navigation state associated with the vehicle based on a difference between the compared odometer values. For example, the estimated initial position and/or navigation state may substantially correspond to the last known position and last known heading if the difference between the odometer values indicates no change, or a non-zero difference may define a radius to limit an estimated error associated with the initial position estimate.
Abstract:
Methods, devices, systems, and non-transitory process-readable storage media for a computing device of an autonomous vehicle to generate real-time mappings of nearby vehicles. An embodiment method executed by a computing device may include operations for obtaining origin point coordinates via a first satellite-based navigation functionality, obtaining termination point coordinates via a second satellite-based navigation functionality, calculating a unit vector based on the obtained origin point coordinates and the obtained termination point coordinates, identifying a position, a direction, and an occupancy of the autonomous vehicle based on the obtained origin point coordinates, the calculated unit vector, and stored vehicle dimensions data (e.g., length, width, height), and transmitting a message using DSRC with the origin point coordinates, the stored vehicle dimensions data, and data for identifying the vehicle's direction. The computing device may compare the direction, position, and occupancy to data of nearby vehicles based on incoming messages received via DSRC.
Abstract:
The disclosure relates to estimating an initial position and navigation state associated with a vehicle using odometry and/or other data obtained from the vehicle to support dead reckoning at start-up. In particular, a last known position and last known heading at a first odometer value associated with the vehicle may be stored and compared to a current odometer value after linking a mobile device with the vehicle. The last known position and last known heading may be used to estimate the initial position and navigation state associated with the vehicle based on a difference between the compared odometer values. For example, the estimated initial position and/or navigation state may substantially correspond to the last known position and last known heading if the difference between the odometer values indicates no change, or a non-zero difference may define a radius to limit an estimated error associated with the initial position estimate.
Abstract:
Systems and methods for constraining growth in position uncertainty of a mobile device are based on determination that the mobile device is in a pedestrian mode. Determination of the pedestrian mode is based on detection of steps by a pedometer, speed of motion of the mobile device, turn rate determination by a gyroscope, charging condition of the mobile device, availability of satellite signals, etc. Step counts and/or turn rate information are used to ascertain the distance that a pedestrian user may have traversed from a last known position, based on which growth of position uncertainty is controlled.
Abstract:
Embodiments implement a device having a sensor element, where different data streams created as part of a sensor module integrated with the sensor element may create multiple sensor data streams from a single sensor element, and may concurrently convey information from the sensor element to respective different applications having different data parameter requirements such that the data streams each match the parameter requirements of the different applications.
Abstract:
Methods, apparatuses, and devices for generating one or more harsh or diminished radiofrequency environments relative to a planned route of a mobile device user. In one example, a mobile device user a be routed through a harsh or diminished radiofrequency environment based, at least in part, on a sensor suite of a mobile device and/or based on a user's preferences. Prior to entry into such an environment, various sensors may be activated in a manner that permits position estimation in an absence of SPS based positioning signals and/or TPS based positioning signals.
Abstract:
Embodiments implement a device having a sensor optimizer, where a source data stream from a sensor module may be used by the sensor optimizer to create multiple sensor data streams having different data stream parameters (e.g. data rate, calibration, scaling, etcetera) from the source data stream. Such a sensor optimizer may intercept requests for sensor data from applications running on a mobile device processor, and concurrently provide data streams having different data stream parameters to applications executed by the processor.
Abstract:
The disclosure generally relates to determining position of a motorized vehicle using wireless techniques. Methods, apparatus and systems are disclosed. A method can include: receiving absolute positioning data; receiving, from a mobile device, at least one of gyroscope data and odometry data; receiving, from a vehicle, at least one of gyroscope data and odometry data; initializing at least a heading to determine a relative path, wherein the relative path is based at least in part on the received data from the mobile device and the vehicle, wherein the received data comprises gyroscope data and odometry data; and shifting the relative path to an estimated path, wherein the estimated path is based at least in part on the absolute positioning data.
Abstract:
Systems and methods for constraining growth in position uncertainty of a mobile device are based on determination that the mobile device is in a pedestrian mode. Determination of the pedestrian mode is based on detection of steps by a pedometer, speed of motion of the mobile device, turn rate determination by a gyroscope, charging condition of the mobile device, availability of satellite signals, etc. Step counts and/or turn rate information are used to ascertain the distance that a pedestrian user may have traversed from a last known position, based on which growth of position uncertainty is controlled.