Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, an apparatus may determine a time-averaged power limit of a set of antennas. The apparatus may modify an antenna switching configuration based at least in part on the time-averaged power limit. The apparatus may transmit a signal using an antenna, from the set of antennas, associated with the modified antenna switching configuration, wherein the antenna is associated with a higher power limit than one or more other antennas. Numerous other aspects are described.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may establish a first communication link using a first radio access technology (RAT). The UE may establish a second communication link using a second RAT. The UE may determine whether to prioritize antenna selection for the first communication link using the first RAT or the second communication link using the second RAT. The UE may prioritize antenna selection for the first communication link or the second communication link based at least in part on the determination. Numerous other aspects are provided.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a multi-subscriber identity module (SIM) user equipment (UE) may communicate, using a first SIM, on a plurality of component carriers. The multi-SIM UE may select a first subset of component carriers from the plurality of component carriers based at least in part on a component carrier prioritization. The multi-SIM UE may identify an amount of memory available to a second SIM. The multi-SIM UE may tune away, based at least in part on the amount of memory available to the second SIM, from a second subset of component carriers The first subset of component carriers may be different from the second subset of component carriers. Numerous other aspects are described.
Abstract:
Methods, systems, and devices for wireless communication are described. A multi-antenna user equipment (UE) may communicate with a base station using a first antenna, determine to switch from the first antenna to a second antenna for communicating with the base station, determine a silence window in which communication with the base station is suspended, schedule the switch from the first antenna to the second antenna to occur during the silence window, and switch from the first antenna to the second antenna during the silence window.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may establish a first communication link using a first radio access technology (RAT). The UE may establish a second communication link using a second RAT. The UE may determine whether to prioritize antenna selection for the first communication link using the first RAT or the second communication link using the second RAT. The UE may prioritize antenna selection for the first communication link or the second communication link based at least in part on the determination. Numerous other aspects are provided.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may transmit, on a first subscriber identity module (SIM) operating in a connected mode, a signal using a first antenna associated with a first antenna module. The UE may configure, for a second SIM operating in an idle mode, a second antenna associated with the first antenna module for receive operations. The UE may switch a transmit antenna associated with the first SIM from the first antenna to a third antenna associated with a second antenna module based at least in part on configuring the second antenna for receive operations and based at least in part on the first antenna module being unable to support concurrent transmission and reception of signals. The UE may transmit, on the first SIM, a signal using the third antenna. Numerous other aspects are described.
Abstract:
In a dual network link scenario, a wireless network may provide a user equipment (UE) with a measurement configuration indicating multiple inter-frequency measurement objects during an off duration of a discontinuous reception (DRX) cycle configured on a first network link. The UE may assign the inter-frequency measurement objects to a second network link if the second network link has an always-on configuration. Alternatively, if the second network link has a DRX configuration, the UE may perform some inter-frequency measurement activities on the first network link and assign some inter-frequency measurement objects to unoccupied gap occasions in the off duration for the DRX cycle configured on the second network link. In this way, the UE may save power by spending more time in a low power state, and mobility performance for the UE may be improved by increasing the efficiency and reliability of inter-frequency measurement activities.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive a master information block (MIB) that includes an indication that there is no cell-defining synchronization signal block (SSB) on a frequency on which the UE is camped; and deprioritize a reselection procedure for one or more cells on the frequency based at least in part on the indication that there is no cell-defining SSB on the frequency. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communications are described. A wireless device may detect a collision of paging messages for a first subscription and a second subscription of the wireless device during a paging processing duration, the first receive chain including at least one antenna path. The wireless device may determine that, in a connected mode, it is configured to operate a second receive chain with one or more additional antenna paths, and may allocate, for a subsequent instance of the paging processing duration, the first subscription to one of the first receive chain or the second receive chain, and the second subscription to the other of the first receive chain or the second receive chain. The wireless device may monitor, during the subsequent instance of the paging processing duration, for a first paging message and a second paging message using the first and second receive chains.
Abstract:
Aspects of the methods and apparatus include determining that a time-to-trigger (TTT) timer has expired, and determining that a serving radio access technology (RAT) received signal characteristic is less than a signal characteristic threshold when the TTT timer has expired. Further, the aspects include determining, in response to the serving RAT received signal characteristic being less than the signal characteristic threshold, that a target RAT frequency measurement associated with a Measurement Report Message (MRM) for performing an inter-RAT (IRAT) handover cannot be completed within a time limit according to a current measurement gap configuration. Also, the aspects include calculating a measurement gap duration sufficient to complete the target RAT frequency measurement associated with the MRM for performing the IRAT handover, and configuring a new measurement gap prior to the time limit, wherein the new measurement gap comprises the calculated measurement gap duration.