Abstract:
Disclosed are techniques for accessing a shared communication medium. An aspect includes communicating over the shared communication medium in accordance with a Time Division Duplexing (TDD) frame structure defining a set of downlink subframes and a set of uplink subframes, each uplink subframe being divided into a transmission gap period, a contention-exempt period, and a contention-compliant period, performing a contention procedure for contending for access to the shared communication medium during the transmission gap period, selectively transmitting contention-compliant uplink control signals during the contention-compliant period, and transmitting one or more contention-exempt uplink control signals during the contention-exempt period. An aspect includes receiving a downlink subframe of the shared communication medium and transmitting an acknowledgment of the downlink subframe during an uplink subframe of the shared communication medium, the uplink subframe occurring at least a predetermined number of subframes and/or at least a predetermined amount of time after the downlink subframe.
Abstract:
Techniques for managing re-contention on a shared communication medium are disclosed. In order to facilitate re-contending for access to the communication medium, an access point may adjust one or more uplink transmission parameters associated with a triggering condition for invoking a contention timer. In addition or as an alternative, the access point may mute transmission on the communication medium during one or more symbol periods designated for transmission. In addition or as an alternative, the access point may configure a timing advance to create a re-contention gap.
Abstract:
Systems and methods for resource coordination and management in a communication environment are disclosed. The resource coordination and management may comprise, for example: transmitting channel and interference measurement signals over a plurality of resources; receiving link signal quality measurements that are based on the transmission of the channel and interference measurement signals over the plurality of resources; exchanging link signal quality measurement information with at least one apparatus, wherein the exchange of the link signal quality measurement information comprises sending information based on the received link signal quality measurements; and determining a data transmission schedule based on the exchange of the link signal quality measurement information.
Abstract:
The disclosure is related to selecting an operating channel for a cellular network to reduce interference to a wireless local area network (WLAN) operated by a small cell comprising a WLAN access point and a cellular network modem. The small cell performs a channel scan of available channels, determines whether or not there is a clean channel to be the operating channel for the cellular network based on the channel scan, wherein a clean channel comprises a channel that interferes with the WLAN less than a WLAN interference threshold, and selects the clean channel as the operating channel for the cellular network based on the clean channel being available or turns off the cellular network based on no clean channel being available.
Abstract:
Systems and methods for measurement reporting in unlicensed spectrum are disclosed. A user device may perform one or more signaling measurements in an unlicensed frequency band in accordance with a first Radio Access Technology (RAT) and send feedback information relating to the signaling measurements to a small cell base station, with the feedback information being sent in accordance with a second RAT. A message may be sent to the user device in accordance with the second RAT that configures the user device to perform the one or more signaling measurements in the unlicensed frequency band.
Abstract:
The present disclosure presents a method and an apparatus of triggering an inter cell interference coordination (ICIC) mechanism in a wireless network. For example, the disclosure presents a method for identifying a pilot pollution metric and determining when a pilot pollution condition based at least on the pilot pollution metric is satisfied. In addition, such as an example method may include triggering an ICIC mechanism when the pilot pollution condition is satisfied. As such, triggering an ICIC mechanism in a wireless network may be achieved.
Abstract:
Wireless communication apparatus and methods related to dynamic TDD are described. In aspects, a method of wireless communication over a shared medium may include, receiving, from a base station, control information in a first portion of a transmission opportunity (TXOP), wherein the control information indicates a configuration for triggering a communication of at least one shared medium reservation signal associated with one or more remaining portions of the TXOP; and in response to receiving the control information in the first portion of the TXOP, monitoring for or transmitting the at least one shared medium reservation signal, based on the configuration.
Abstract:
Techniques for access terminal radio link monitoring on a shared communication medium are disclosed. In an aspect, an access terminal detects a missed reference signal event associated with a radio link established on the shared communication medium, wherein detecting the missed reference signal event comprises determining that the access terminal did not detect a reference signal for measuring a quality of the radio link transmitted during a reference signal configuration window, assigns an error metric to the missed reference signal event based on reference signal monitoring capabilities of the access terminal, and triggers a radio link failure based on the assigned error metric. In an aspect, the missed reference signal event may be a missed Discovery Reference Signaling (DRS) event, the error metric may be a Block Error Rate (BLER) weight, and the reference signal for measuring the quality of the radio link comprises a Cell-specific Reference Signal (CRS).
Abstract:
The present disclosure relates generally to uplink procedures on a shared communication medium. In an aspect, an access terminal receives a downlink subframe from an access point on the shared communication medium and, in response to receiving the downlink subframe, transmits uplink control information (UCI) for the downlink subframe on a first uplink subframe of a first UCI channel of a plurality of UCI channels.
Abstract:
Techniques for managing preamble transmission and processing on a shared communication medium are disclosed. An access point or an access terminal, for example, may generate a preamble for silencing communication on a communication medium with respect to an upcoming data transmission, configure the preamble to identify one or more target devices for the silencing, and transmit the preamble over the communication medium in advance of the data transmission. Conversely, the access point or the access terminal may receive a preamble (as a receiving device) over a communication medium, identify one or more target devices for silencing communication on the communication medium with respect to an upcoming data transmission based on the preamble, and selectively silence communication over the communication medium based on itself (as the receiving device) being among the one or more target devices.