Abstract:
Methods, systems, and devices for wireless communications are described. A communication device, otherwise known as a user equipment (UE) may transmit a data transmission to a receiver. In some examples, the data transmission may be a radio link control (RLC) protocol data unit (PDU) transmission. The UE may store the data transmission in a retransmission buffer, and transmit a feedback request to the receiver in a subsequent data transmission based on a system memory utilization threshold for the retransmission buffer being satisfied due to storage of the data transmission.
Abstract:
In one aspect, a method of wireless communication includes determining a number of bytes in a compressed queue and a number of bytes in an uncompressed queue. The method also includes transmitting a buffer status report (BSR) indicating at least the number of bytes in the compressed queue. The method includes receiving an uplink grant indicating one or more uplink grant resources and a number of bytes allocated for the one or more uplink grant resources. The method also includes generating a transport block (TB) based on the uplink grant and the BSR and from data of at least the compressed queue, wherein the TB includes one or more compressed packets and one or more uncompressed packets. The method further includes transmitting a PUSCH transmission including the TB during an uplink grant resource of the one or more uplink grant resources. Other aspects and features are also claimed and described.
Abstract:
In wireless communication, uplink communication by a wireless communication system user equipment may include providing data packets by a data source in the user equipment, detecting a pattern relating to uplink transmission of the plurality of data packets, and scheduling transmission of the plurality of data packets by the user equipment. One or more aspects of scheduling transmission of the plurality of data packets may be based on the detected pattern.
Abstract:
Various aspects of the disclosure relate to techniques for handling out-of-order grants. For example, upon detection of an out-of-order grant, the best scheduling policy for handling the out-of-order grants may be selected based on at least one traffic condition. In some aspects, a scheduling policy may involve canceling and regenerating out-of-order grants. In some aspects, a scheduling policy may involve reordering data units. In some aspects, a scheduling policy may involve designating a reorder time window.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives a stream of RTP data packets over a wireless channel and applies ROHC decompression to decode the packets. Upon a failure of ROHC decompression, the apparatus identifies the RTP sequence number (SN), RTP Timestamp (TS), and PDCP receive time (RT) of a prior successfully decoded packet, and the PDCP SN and PDCP RT of the failed packets. Using the identified information, the apparatus estimates the RTP SN and RTP TS of each of the failed packets. The apparatus decodes the packets using the estimated information.
Abstract:
A recovery mechanism for robust header compression (ROHC) is disclosed for wireless communication systems. The ROHC recovery mechanism may allow a receiver and/or transmitter in the wireless systems to establish or reestablish a context of a packet transmission session when an initialization and refresh message is lost. In the ROHC recovery mechanism, upon receiving a compressed packet that is not associated with a context, a receiver sends a message to a transmitter suggesting the transmitter to transition to another mode. Upon receiving a subsequent packet transmission that is not associated with a context, the receiver sends another message indicating that a context has not been established or has been lost. The transmitter may then send the receiver necessary information to establish a context for the packet transmission session.