UPLINK ACK RESOURCE ALLOCATION IN NEW RADIO
    22.
    发明申请

    公开(公告)号:US20180262304A1

    公开(公告)日:2018-09-13

    申请号:US15917514

    申请日:2018-03-09

    Abstract: A method and apparatus for enabling an UE to selecting acknowledgement/non-acknowledgement (ACK/NACK) resources from a subset of a gNB resource pool. The example method may receive, from an gNB, a radio resource control (RRC) configuration indicating a UE-specific resource set that is a subset of a gNB resource pool. The UE may determine one or more ACK/NACK resources from the UE-specific resource set for an upcoming physical uplink control channel (PUCCH). In some aspects, the UE may determine the one or more ACK/NACK resources based on receiving, from the gNB, a physical downlink control channel (PDCCH) including a corresponding ACK/NACK resource configuration. In other aspects, the RRC may contain multiple resource subsets and the UE may determine the one or more ACK/NACK resources based on determining a size of a payload for a UCI to be transmitted on the PUCCH. The aspects may thus enable dynamic ACK/NACK resource allocation.

    LARGE CELL SUPPORT FOR NARROWBAND RANDOM ACCESS

    公开(公告)号:US20180139025A1

    公开(公告)日:2018-05-17

    申请号:US15802306

    申请日:2017-11-02

    Abstract: Aspects of the present disclosure provide techniques and apparatus for performing narrowband physical random access channel (PRACH) procedures in large cells. For example, aspects of the present disclosure provide techniques for narrowband PRACH procedures (e.g., narrowband internet of things (NB-IoT)) to accommodate larger RTTs (e.g., up to 100 km). In some cases, supporting larger RTTs may involve a base station altering its PRACH processing by performing a two-step process of, first, obtaining a frequency domain phase offset based on an uplink signal from a UE, which provides a fractional delay and, second, performing a time domain correlation for different timing hypotheses to determine a timing offset based on the uplink signal. Supporting larger RTTs may also involve enabling a new NPRACH format that may coexist with legacy 3.75 kHz resources.

Patent Agency Ranking