Abstract:
A first reference index value indicates a position, within a reference picture list associated with a current prediction unit (PU) of a current picture, of a first reference picture. A reference index of a co-located PU of a co-located picture indicates a position, within a reference picture list associated with the co-located PU of the co-located picture, of a second reference picture. When the first reference picture and the second reference picture belong to different reference picture types, a video coder sets a reference index of a temporal merging candidate to a second reference index value. The second reference index value is different than the first reference index value.
Abstract:
A video encoder signals, in a bitstream, a syntax element that indicates whether a current video unit is predicted from a VSP picture. The current video unit is a macroblock or a macroblock partition. The video encoder determines, based at least in part on whether the current video unit is predicted from the VSP picture, whether to signal, in the bitstream, motion information for the current video unit. A video decoder decodes the syntax element from the bitstream and determines, based at least in part on the syntax element, whether the bitstream includes the motion information.
Abstract:
In one example, a device includes a video coder configured to code a picture order count (POC) value for a first picture of video data, code a second-dimension picture identifier for the first picture, and code, in accordance with a base video coding specification or an extension to the base video coding specification, a second picture based at least in part on the POC value and the second-dimension picture identifier of the first picture. The video coder may comprise a video encoder or a video decoder. The second-dimension picture identifier may comprise, for example, a view identifier, a view order index, a layer identifier, or other such identifier. The video coder may code the POC value and the second-dimension picture identifier during coding of a motion vector for a block of the second picture, e.g., during advanced motion vector prediction or merge mode coding.
Abstract:
Techniques are described for determining a disparity vector for a current block based on disparity motion vectors of one or more spatially and temporally neighboring regions to a current block to be predicted. The spatially and temporally neighboring regions include one or a plurality of blocks, and the disparity motion vector represents a single vector in one reference picture list for the plurality of blocks within the spatially or temporally neighboring region. The determined disparity vector could be used to coding tools which utilize the information between different views such as merge mode, advanced motion vector prediction (AMVP) mode, inter-view motion prediction, and inter-view residual prediction.