Abstract:
Transfer of Multimedia Broadcast/Multicast Services (MBMS) over a Single Frequency Network (MBSFN) service and idle mode unicast service for a mobile entity from a source base station to a target base station may be managed by a base station or mobile entity of a cellular wireless communications system (WCS). Operations related to the transfer may include obtaining an MBMS status of the mobile entity, and/or obtaining MBMS support information for the base station. A network entity may facilitate MBMS discovery by a mobile entity, by transmitting a data element to the mobile entity including service identifiers mapped to corresponding cell identifiers to indicate respective MBMS services to be broadcast in an WCS area on adjacent cells identified by respective ones of the cell identifiers. The MBMS services may be broadcast within the WCS area using the adjacent cells previously indicated in the data element.
Abstract:
A coax line terminal includes a first media access controller (MAC) corresponding to a first group of coax network units and a second MAC corresponding to a second group of coax network units. The coax line terminal also includes a first physical media entity (PME), coupled to the first MAC, to generate signals for transmission in a first frequency band, and a second PME, coupled to the first and second MACs, to generate signals for transmission in a second frequency band. The coax line terminal further includes a PME multiplexer to control access of the first and second MACs to the second PME.
Abstract:
Methods, systems, and devices are described for wireless communication including. A first access point may receive a discovery signal from a second access point. The second access point may be associated with a first radio access technology (RAT). The first access point may determine that the second access point is collocated with a cell of a second RAT based on the received discovery signal. The second RAT may be different from the first RAT.
Abstract:
A communication device includes a resource allocation module to allocate coax resources for signals to be transmitted over a cable plant and a coax physical layer device to transmit the signals over the cable plant using the allocated coax resources. The communication device also includes a media access controller, coupled to the multi-point control protocol implementation and the coax physical layer device, to provide to the coax physical layer device a bitstream that includes data for the signals and also includes information specifying the allocated coax resources.
Abstract:
Techniques are provided for managing simultaneous unicast and multicast/broadcast services. For example, there is provided a method operable by a user equipment (UE) or the like, that involves transmitting, upon initial connection with a wireless communication system, a first message indicating one or more capabilities of the UE. The method may further involve transmitting a second message indicating that the UE is receiving or is about to receive a multicast/broadcast service. The method may also involve receiving, as a result of the second message, data scheduled in accordance with one or more predetermined rules.
Abstract:
A coax line terminal (CLT) transmits allocations of upstream bandwidth to a plurality of coax network units (CNUs). In response to the allocations, the CLT receives frames with data in a plurality of physical resource blocks that each correspond to a distinct set of subcarriers. The plurality of physical resource blocks includes a first group of physical resource blocks that all have a first constant allowed capacity. Sizes and modulation orders of respective physical resource blocks in the first group vary as defined by a first modulation profile. The data in the first group are received from one or more CNUs that are assigned the first modulation profile.
Abstract:
Methods and apparatus for adjusting transmission power in wireless networks are provided. One aspect of the disclosure provides a method of wireless communication over a wireless communication medium. The method includes determining a level of interference for a data transmission from a transmitting device to an intended receiving device. The method further includes setting a transmission power level for transmitting a message based on the interference level, the message comprising one of a request-to-send (RTS) packet and a clear-to-send (CTS) packet. The method further includes transmitting the message at the set transmission power level.
Abstract:
Techniques are provided to facilitate offloading of mobile entities from a serving network entity. For example, there is provided a location-based method that involves, in response to a load of the requesting entity exceeding a load threshold, identifying candidate network entities to which to offload a user equipment (UE), each of the candidate network entities being in sleep mode. The method may involve determining coverage and location information for the candidate network entities, and determining location information for the UE. The method may involve selecting a given network entity to turn ON based at least in part on the coverage information and the location information. The method may involve sending an ON-request message to the at least one selected network entity, the ON-request message including a timer that can be used to deactivate the selected network entity in case it is not useful in offloading the serving network entity.
Abstract:
A communication device includes a resource allocation module to allocate coax resources for signals to be transmitted over a cable plant and a coax physical layer device to transmit the signals over the cable plant using the allocated coax resources. The communication device also includes a media access controller, coupled to the multi-point control protocol implementation and the coax physical layer device, to provide to the coax physical layer device a bitstream that includes data for the signals and also includes information specifying the allocated coax resources.
Abstract:
Waveforms for wireless communication are shaped asymmetrically according to a complex-valued weighted overlap/add (WOLA) filter. A wireless communication device generates a waveform corresponding to a carrier. The device determines whether neighboring carriers are being used for wireless communication. If one neighboring carrier is occupied and the other is unoccupied, the wireless communication device applies the asymmetrical filter to the waveform such that out-of-band signals which may interfere with the occupied carrier are suppressed to a greater extent than out-of-band signals potentially present in or around the unoccupied carrier. The wireless communication device then transmits the asymmetrically shaped waveform to maximize interference reduction and signal quality.