Abstract:
A highly blocking diode structure having a thin film a-Si:H (amorphous silicon containing hydrogen) layer, suitable for use in constructing image sensor arrays, has two conductive electrodes disposed on opposite sides of the a-Si:H thin film layer. The structure is constructed on an electrically insulating substrate and includes a barrier layer disposed between the a-Si:H layer and the top electrode. The top electrode may consist of indium tin oxide or of palladium silicide, and the barrier layer may consist of silicon oxide produced by converting the surface of the a-Si:H layer. The barrier layer is disposed on that side of the a-Si:H layer opposite the substrate. The barrier layer significantly improves the behavior of the contacts and the stability of the boundary surface between the a-Si:H layer and the transparent metal oxide comprising the electrode. The sequence for constructing the diode arrangement is considerably simplifed.
Abstract:
In a focus detector arrangement and method for an x-ray apparatus for generating projection or tomographic phase-contrast images of an examination subject, a beam of coherent x-rays is generated by an anode that has areas of different radiation emission characteristics arranged in bands thereon, that proceed parallel to grid lines of a phase grid that is used to generate the phase-contrast images.
Abstract:
The invention relates to a device for protecting a display facility, comprising a protective element for covering an image surface of the display facility. As the protective element is designed to be transparent and the retaining means are provided for the exchangeable arrangement of the protective element in front of the image surface, a protective device is provided, which allows the image surface to be examined and is easy to operate.
Abstract:
In a medical imaging system and method, an image data acquisition system is operable in a fluoroscopy mode to obtain a fluoroscopic image of a subject and is operable in a CT mode to obtain projection data sets of the subject that are used to reconstruct a three-dimensional image of a region of interest of the subject. For imaging procedures involving the administration of contrast agent to the subject, the image data acquisition apparatus is operated in the fluoroscopy mode at the time the administration of contrast agent is begun, and the filling of vessels with the contrast agent is automatically monitored by fluoroscopy. When the automatic monitoring indicates that an optimal degree of filling of the vessels with the contrast agent has occurred, the image data acquisition apparatus is automatically switched to operate in the CT mode to acquire projection data sets of the region of interest containing the vessels filled with contrast agent.
Abstract:
A focus-detector arrangement of an X-ray apparatus is disclosed for generating projective or tomographic phase contrast recordings with a phase grating. According to at least one embodiment of the invention, in the gaps between its bars, the phase grating includes a filler material whose linear attenuation coefficient in the relevant energy range is greater than that of the bars. The height of the filler material in the gaps is dimensioned on the one hand so that the X-radiation with the energy used for measuring the phase shift generates a phase shift in the X-radiation such that, after the phase grating, the rays which pass through the bars are phase shifted by one half wavelength relative to the rays which pass through the gaps with the filler material. Further, the height of the filler material in the gaps on the other hand is dimensioned so that the attenuation of the X-radiation, at least in relation to the energy used for measuring the phase shift, is the same when passing through the bars and when passing through the filler material.
Abstract:
An x-ray absorption grid produced by a lithography method for use in a phase-contrast CT system has at least two individual grids arranged atop one another in the radiation direction. Each individual grid has a grid area with a grid structure including grid webs and grid gaps in alternation. Each individual grid has a region outside of the grid area (outer region). The outer region of the at least two individual grids has toothed structures corresponding to one another at least two points. The toothed structures are generated as well in the production of the grid structure. The toothed structures have a position that is defined relative to the grid structure, such that a defined alignment of the individual grids occurs given a combination of the individual grids by engagement of the toothed structures of individual grids lying atop one another.
Abstract:
A focus-detector arrangement of an X-ray apparatus is disclosed, for generating projective or tomographic phase contrast recordings of a subject. In at least one embodiment, least one grating of a focus-detector arrangement includes, at least partially, a macroscopically homogeneous medium which, when excited by an energy source, assumes a periodic structure/standing wave field that leads to beam splitting and the formation of an interference pattern when the X-ray beam passes through.
Abstract:
A focus-detector arrangement of an X-ray apparatus is disclosed for generating projective or tomographic phase contrast recordings of an observed region of a subject. In at least one embodiment, the arrangement includes a radiation source which emits a coherent or quasi-coherent X-radiation and irradiates the subject, a phase grating which is arranged behind the subject in the beam path of the radiation source and generates an interference pattern of the X-radiation in a predetermined energy range, and an analysis-detector system which detects at least the interference pattern generated by the phase grating in respect of its phase shift with position resolution. Further, the beam path of the X-radiation used diverges in at least one plane between the focus and the detector.
Abstract:
To adapt with low outlay to different patient sizes, an X-ray mammography machine is disclosed, including a digital, substantially rectangular flat solid state detector delimited by two parallel longitudinal edges and two parallel, shorter transverse edges. The flat solid state detector can be adjusted in such a way that a longitudinal edge can be positioned parallel to a chest wall of a female patient in a first position, and a transverse edge can be positioned parallel to the chest wall of the female patient in a second position.
Abstract:
A method and a measuring arrangement are disclosed for nondestructive analysis of an examination object. In at least one embodiment of the method, x-radiation having a specific energy spectrum is generated by an x-ray source, with the aid of at least one x-ray/optical grating in the beam path of the x-radiation there is generated a standing wave field of this x-radiation that is positioned at least partially in the examination object, and the radiation excited by the x-ray standing wave field in the examination object is measured as a function of at least one relative position between the examination object and the x-ray standing wave field. Further, a material distribution in the examination object is inferred from the measurement result of the radiation excited by the x-ray standing wave field.