Abstract:
An apparatus used with a processor to perform fuel gauge operation for a battery of a portable device includes a voltage measuring circuit and a control circuit. The voltage measuring circuit periodically measures and records a battery pack voltage for the battery according to time information received from the processor after the processor enters a sleep mode. The control circuit generates an accumulation result by calculating and accumulating at least one value of battery characteristics according to the battery pack voltage, and compares the accumulation result with a reference threshold of battery characteristics to determine whether to trigger an interrupt to wake up the processor, so as to cause the processor to update a battery cell voltage and an internal battery resistance of the battery for performing fuel gauge operation.
Abstract:
A method used between a portable device and a battery pack including at least one battery cell includes: transmitting information for the battery cell from the portable device to the battery pack via the connecting interface or from the battery pack to the portable device via the connecting interface; and, according to the information for the battery cell, performing at least one control operation that is associated with the battery cell.
Abstract:
A power management apparatus used in a system comprising multiple batteries includes an ADC measurement circuit and a processing circuit. The ADC measurement circuit is configured for measuring or detecting a plurality of voltage levels for each of the multiple batteries. The processing circuit is configured for calculating a DC current for each of the batteries according to an internal resistance of each of the batteries and the detected voltage levels, and for estimating an internal voltage level for each of the batteries according to the calculated DC current.
Abstract:
A method for estimating a battery power percentage of a battery includes: performing a first fuel gauge operation upon the battery; and using the first fuel gauge operation to generate the battery power percentage of the battery by referring to information measured by a second fuel gauge operation performed upon the battery wherein the second fuel gauge operation is different from the first fuel gauge operation.
Abstract:
A method for performing power consumption control is provided, where the method is applied to an electronic device. The method includes: sensing a current on a current path between a battery and at least one portion of the electronic device by performing sampling operations to generate a plurality of samples; performing calculation on the samples to monitor the current; and based upon the calculation, when it is detected that the current reaches a predetermined threshold, triggering the battery into a second mode from a first mode. In particular, performing the sampling operations to generate the plurality of samples further includes: utilizing an analog-to-digital converter (ADC) to perform the sampling operations on a voltage difference corresponding to the current to generate the plurality of samples. For example, the voltage difference can be obtained by probing two terminals of a resistor or a Hall component. An associated apparatus is also provided.
Abstract:
A method for determining a State of Charge of a battery module with a first battery having a first rated capacity and a second battery having a second rated capacity including determining an adjusted rated capacity according to at least one of property data of the first battery, property data of the second battery and a system requirement, wherein the adjusted rated capacity is smaller than a summation of the first rated capacity and the second rated capacity; and determining a State of Charge (SoC) which indicates a level of charge of the battery module relative to a total capacity of the battery module according to the level of charge of the battery module and the adjusted rated capacity.
Abstract:
A method for estimating a battery power percentage of a battery includes: performing a first fuel gauge operation upon the battery; and using the first fuel gauge operation to generate the battery power percentage of the battery by referring to information measured by a second fuel gauge operation performed upon the battery wherein the second fuel gauge operation is different from the first fuel gauge operation.
Abstract:
A method applied into an electronic device and capable of measuring at least one resistance parameter includes: launching a program/application on the electronic device; and using the program/application to measure the at least one resistance parameter that is at least associated with a battery cell connected to and used for providing power to the electronic device.
Abstract:
A method for calibrating a coulomb counting based state-of-charge (SOC) estimation of a battery cell includes: determining whether the battery cell is in a specific charge state; calibrating an initial value for use in the coulomb counting based SOC estimation according to an open circuit voltage (OCV)-based SOC of the battery cell if the battery cell is not in the specific charge state; calibrating the initial value according to a predetermined value if the battery cell is in the specific charge state; and applying the calibrated initial value to the coulomb counting based SOC estimation and restarting an integration of the coulomb counting based SOC estimation based on the calibrated initial value.
Abstract:
A state-of-charge (SOC) indication method includes: determining estimated values of a SOC of a battery cell according to at least information regarding a characteristics measurement of the battery cell; performing a smooth and monotonic processing on the estimated values of the SOC to process unusual change in the estimated values, so as to generate processed values of the SOC; remapping the processed values of the SOC according to a remapping threshold setting to obtain remapped values of the SOC; and indicating the SOC of the battery cell with the remapped values.