摘要:
According to the present invention, as a structure of a pixel section (10), in each of columns from a first to a m-th column, a plurality of pixel signals outputted from a plurality of pixels arranged in a column direction are transmitted, respectively, to a plurality of output signal lines (15l to 15n) different from each other. Then, a read control and are set control are simultaneously executed on the plurality of pixels.
摘要:
In each photosensitive cell, a photodiode 101, a transfer gate 102, a floating diffusion layer section 103, an amplifier transistor 104, and a reset transistor 105 are formed in one active region surrounded by a device isolation region. The floating diffusion layer section 103 included in one photosensitive cell is connected not to the amplifier transistor 104 included in that cell but to the gate of the amplifier transistor 104 included in another photosensitive cell adjacent to the one photosensitive cell in the column direction. A polysilicon wire 111 connects the transfer gates 102 arranged in the same row, and a polysilicon wire 112 connects the reset transistors 105 arranged in the same row. For connection in the row direction, only polysilicon wires are used.
摘要:
Photosensitive cells each includes a photodiode (1), a transfer gate (2), a floating diffusion layer portion (3), an amplifying transistor (4), and a reset transistor (5). Drains of the amplifying transistors (4) of the photosensitive cells are connected to a power supply line (10), and a pulsed power supply voltage (VddC) is applied to the power supply line (10). Here, a low-level potential (VddC_L) of the power supply voltage has a predetermined potential higher than zero potential. Specifically, by making the low-level potential (VddC_L) higher than channel potentials obtained when a low level is applied to the reset transistors (5), or channel potentials obtained when a low level is applied to the transfer gates (2), or channel potentials of the photodiodes (1), a reproduced image with low noise is read.
摘要:
An amplification type solid state imaging device in use includes at least a light-receiving portion 10 formed by arranging on a semiconductor substrate 7 one-dimensionally or two-dimensionally a plurality of pixels that convert incident light to signal charge and output electric signals corresponding to the amount of the signal charge, a reader for reading out sequentially the electric signals from the respective pixels, a noise rejection circuit 11 for suppressing spurious signals for the electric signals read out by the reader, and a first light-shielding layer 1 positioned on the upper part of the light-receiving portion 10 so as to restrict entry of light into parts other than photoelectric conversion portions 10a of the pixels. Furthermore, a second light-shielding layer 2 for restricting entry of light into the noise rejection circuit 11 is provided on the upper part of the noise rejection circuit 11.
摘要:
An amplification type solid state imaging device in use includes at least a light-receiving portion 10 formed by arranging on a semiconductor substrate 7 one-dimensionally or two-dimensionally a plurality of pixels that convert incident light to signal charge and output electric signals corresponding to the amount of the signal charge, a reader for reading out sequentially the electric signals from the respective pixels, a noise rejection circuit 11 for suppressing spurious signals for the electric signals read out by the reader, and a first light-shielding layer 1 positioned on the upper part of the light-receiving portion 10 so as to restrict entry of light into parts other than photoelectric conversion portions 10a of the pixels. Furthermore, a second light-shielding layer 2 for restricting entry of light into the noise rejection circuit 11 is provided on the upper part of the noise rejection circuit 11.
摘要:
The solid-state imaging device according to one embodiment of the present invention includes a semiconductor substrate, a plurality of photoelectric conversion regions arrayed in the vertical direction and the horizontal direction on the surface of the substrate, and an electric charge transfer region disposed between the photoelectric conversion regions adjacent in the horizontal direction of the substrate. The substrate comprises a n-type semiconductor substrate, a first p-type impurity region formed on the n-type semiconductor substrate, a semiconductor regions formed on the first p-type impurity region, and a second p-type impurity region disposed below the electric charge transfer region. The photoelectric conversion region and the electric charge transfer region are n-type impurity regions formed on the surface portion of the semiconductor region. A third p-type impurity region is formed in at least one region selected from the group consisting of a region located between the photoelectric conversion regions adjacent in the vertical direction and a region located below the second p-type impurity region between the photoelectric conversion regions adjacent in the horizontal direction in the semiconductor region.
摘要:
An amplification type solid state imaging device in use includes at least a light-receiving portion 10 formed by arranging on a semiconductor substrate 7 one-dimensionally or two-dimensionally a plurality of pixels that convert incident light to signal charge and output electric signals corresponding to the amount of the signal charge, a reader for reading out sequentially the electric signals from the respective pixels, a noise rejection circuit 11 for suppressing spurious signals for the electric signals read out by the reader, and a first light-shielding layer 1 positioned on the upper part of the light-receiving portion 10 so as to restrict entry of light into parts other than photoelectric conversion portions 10a of the pixels. Furthermore, a second light-shielding layer 2 for restricting entry of light into the noise rejection circuit 11 is provided on the upper part of the noise rejection circuit 11.
摘要:
A solid-state imaging device which can, in response to the problem of black-crush occurring in an image when strong light is enters the device, positively detect black-crush in a state in which a variance margin has been secured. The solid-state imaging device outputs a luminance signal in accordance with an amount of received light, and includes: a pixel circuit having a light-receiving element; a signal output circuit having a sampling transistor which outputs, from a second signal output line, a luminance signal in accordance with the amount of light received by the light-receiving element, based on an output signal from the pixel circuit; and a high-intensity judgment circuit which is coupled by the pixel circuit and a judgment input coupling capacitor, judges whether or not light entering the light-receiving element is of high intensity based on the output signal from the pixel circuit, and in the case of judging the entering light to be of high intensity, outputs a luminance signal indicating high intensity.
摘要:
A solid-state imaging device which can, in response to the problem of black-crush occurring in an image when strong light is enters the device, positively detect black-crush in a state in which a variance margin has been secured. The solid-state imaging device outputs a luminance signal in accordance with an amount of received light, and includes: a pixel circuit having a light-receiving element; a signal output circuit having a sampling transistor which outputs, from a second signal output line, a luminance signal in accordance with the amount of light received by the light-receiving element, based on an output signal from the pixel circuit; and a high-intensity judgment circuit which is coupled by the pixel circuit and a judgment input coupling capacitor, judges whether or not light entering the light-receiving element is of high intensity based on the output signal from the pixel circuit, and in the case of judging the entering light to be of high intensity, outputs a luminance signal indicating high intensity.
摘要:
A solid state imaging device according to an aspect of the present invention includes: a pixel array (21) including pixel units arranged in rows and columns; a vertical shift register (26) which selects one of the rows of the pixel array (21); a column amplifier unit (22) including column amplifiers each of which is provided for a corresponding one of the columns and amplifies a column signal provided from the pixel unit included in the selected row; and a limiting circuit which limits an output voltage of the column amplifier to no more than a predetermined voltage that can be changed, wherein the limiting circuit changes the predetermined voltage according to switching between a normal mode and a high-sensitivity mode.