Abstract:
A power conversion circuit includes an input terminal, a first switching element, a second switching element, a third switching element, a fourth switching element, a capacitor; an inductor; and a controller configured to control the switching elements to be switched ON/OFF, such that a voltage at the load is regulated by repetitively (1) charging the inductor with a first current before charging the capacitor causing a second current to flow in the inductor and (2) charging the inductor with a third current before discharging the capacitor causing a fourth current to flow in the inductor.
Abstract:
A voltage regulator includes a plurality of output stages and a controller. The plurality of output stages are arranged for selectively enabling to generate output voltages and output currents or not according to a plurality of control signals, respectively. The controller is arranged for sensing the output currents of the output stages, and generating the control signals according to the sensed output currents. When the controller generates the control signals to reduce a quantity of the enabled output stages, the controller determines whether a summation of the sensed output currents is greater than a first threshold or not to determine whether to enable more output stages, then a period of time later, the controller selectively determines whether the summation of the sensed output currents is greater than a second threshold or not to determine whether to enable more output stages, wherein the second threshold is lower than the first threshold.
Abstract:
Provided is a power supply circuit for a wireless mobile device having a plurality of power amplification components. The power supply circuit includes: a first DC-DC converter, for providing at least one constant output voltage (which is provided to the power amplification components) and/or at least one DC intermediate voltage; a second DC-DC converter, for providing a DC component of at least one time-varying output voltage; and at least one linear amplifier. When the at least one linear amplifier receives the at least one DC intermediate voltage from the first DC-DC converter, the at least one linear amplifier provides at least one AC component of the at least one time-varying output voltage. The DC component and the at least one AC component of the at least one time-varying output voltage are combined into the at least one time-varying output voltage and provided to the power amplification components.
Abstract:
A DC-DC converter includes an inductor, a switch module, a pull-up circuit and a pull-down circuit. The inductor has a first node and a second node, and the second node is coupled to an output node of the DC-DC converter. The switch module is arranged for selectively connecting an input voltage or a ground voltage to the first node of the inductor according to a driving signal. The pull-up circuit is arranged for selectively providing a first current to the output node of the DC-DC converter. The pull-down circuit is arranged for selectively sinking a second current from the output node of the DC-DC converter. In addition, at least one of the first current provided by the pull-up circuit and the second current sunk by the pull-down circuit is determined based on an inductor current flowing through the inductor.
Abstract:
A voltage regulator includes a plurality of output stages and a controller. The plurality of output stages are arranged for selectively enabling to generate output voltages and output currents or not according to a plurality of control signals, respectively. The controller is arranged for sensing the output currents of the output stages, and generating the control signals according to the sensed output currents. When the controller generates the control signals to reduce a quantity of the enabled output stages, the controller determines whether a summation of the sensed output currents is greater than a first threshold or not to determine whether to enable more output stages, then a period of time later, the controller selectively determines whether the summation of the sensed output currents is greater than a second threshold or not to determine whether to enable more output stages, wherein the second threshold is lower than the first threshold.
Abstract:
A power converter includes a wave generator, a low pass filter, a first control circuit, and a second control circuit. The wave generator receives an input voltage, and converts the input signal into a wave signal according to a first control signal and a second control signal. The low pass filter filters the wave signal to generate an output voltage. The first control circuit generates the first control signal according to the wave signal and the output voltage. The second control circuit generates the second control signal according to the wave signal and the output voltage.