Abstract:
A partial decoding circuit with inverse second transform has a transpose buffer, a first-direction inverse residual transform circuit, and a second-direction inverse residual transform circuit. The transpose buffer stores an intermediate inverse residual transform result. The first-direction inverse residual transform circuit processes an inverse quantization output to generate the intermediate inverse residual transform result to the transpose buffer. The second-direction inverse residual transform circuit accesses the transpose buffer to retrieve the intermediate inverse residual transform result, and processes the intermediate inverse residual transform result to generate a final inverse residual transform result, where the final inverse residual transform result of the inverse second transform is further processed by an inverse transform circuit. The first-direction inverse residual transform circuit and the second-direction inverse residual transform circuit process partial residual transform data of different process units in a parallel processing manner.
Abstract:
A coefficient access method includes: receiving a coefficient generated from an entropy decoding process, wherein the received coefficient is a part of a transform block (TB); before the received coefficient is stored into an inverse scan (IS) storage device, determining a storage position of the received coefficient according to a transpose flag associated with the TB, wherein the transpose flag indicates whether or not a coefficient transpose process is needed; and after the storage position is determined, storing the received coefficient into the determined storage position in the IS storage device.
Abstract:
A residual processing circuit has a single-path pipeline and a single-path controller. The single-path pipeline has an inverse scan (IS) circuit, an inverse quantization (IQ) circuit and an inverse transform (IT) circuit arranged to process a current non-zero residual data block in a pipeline manner. The current non-zero residual data block is at least a portion of a transform unit. The single-path controller controls pipelined processing of the current non-zero residual data block at the single-path pipeline. The single-path controller instructs the IS circuit to start IS processing of a next non-zero residual data block before the IT circuit finishes a first half of IT processing of the current non-zero residual data block.
Abstract:
A residual up-sampling apparatus has a residual up-sampling buffer and a shared residual up-sampling circuit. The residual up-sampling buffer stores an intermediate residual up-sampling result. The shared residual up-sampling circuit employs a same processing kernel to perform a first-direction residual up-sampling operation and a second-direction residual up-sampling operation. The first-direction residual up-sampling operation processes an inverse transform output of an inverse transform circuit to generate the intermediate residual up-sampling result to the residual up-sampling buffer. The second-direction residual up-sampling operation performs transpose access upon the residual up-sampling buffer to retrieve the intermediate residual up-sampling result, and processes the intermediate residual up-sampling result to generate a final residual up-sampling result.
Abstract:
A method and apparatus for decoding two-level scanned transform coefficients corresponding to a transform unit (TU) are disclosed. The TU is divided into sub-blocks and the transform coefficients of the TU are scanned across the sub-blocks according to a first scan pattern, and each sub-block is scanned according to a second scan pattern. In one embodiment, the sub-blocks of the transform coefficients received from the variable length decoding are stored in an inverse scan buffer (or TC buffer) and the transform coefficients are retrieved from the inverse scan buffer row-by-row or column-by-column in a selected direction after a corresponding row or column of the transform coefficients is fully received. In a system incorporating an embodiment of the present invention, at least a leading row or a leading column of the transform coefficients is available in the selected direction before a last sub-block of the transform coefficients arrives.