Abstract:
A UE initiates an MMTEL service in RRC Idle mode in a mobile communication network. The UE acquires access control information from a base station. The access control information comprises SSAC configuration information, ACB parameters information, and ACB bypass information. The ACB bypass information indicates whether ACB is applicable to MMTEL service type. The UE then performs SSAC check for the MMTEL service based on the access control information. The UE also performs ACB check for the MMTEL service if ACB is applicable to the MMTEL service. Otherwise, the UE bypasses the ACB check for the MMTEL service. The selective ACB mechanism can prioritize or deprioritize services based on operator's requirement.
Abstract:
LTE-WLAN aggregation (LWA) at the radio access network level promises significant gain in system capacity and user quality of experience (QoE). In order to support QoS over LWA, there is a need to develop mechanisms to ensure that the access category (AC) classification chosen by a wireless device (AP in the case of downlink, and UE in case of uplink) is consistent with the QoS requirements of the EPS bearer/DRB and/or subscriber profile to which the traffic belongs. The cellular LTE network can provision QoS for both downlink and uplink data flows that are transferred using LWA access.
Abstract:
LWA (LTE-WLAN Aggregation) is a tight integration at radio level which allows for real-time channel and load aware radio resource management across WLAN and LTE to provide significant capacity and quality of experience (QoE) improvements. When enabling LWA, packets are routed to a base station (eNB) for performing PDCP functionalities as an LTE PDU. Afterwards, the eNB can schedule the PDU either translated over LTE link or WLAN link. The eNB can acquire packet delay information regarding the WLAN link or obtain PDCP layer performance feedback from the UE. As a result, the eNB can adjust PDCP parameter setting and LWA scheduling accordingly.
Abstract:
LTE-WLAN aggregation (LWA) at the radio access network level promises significant gain in system capacity and user quality of experience (QoE). In order to support QoS over LWA, there is a need to develop mechanisms to ensure that the access category (AC) classification chosen by a wireless device (AP in the case of downlink, and UE in case of uplink) is consistent with the QoS requirements of the EPS bearer/DRB and/or subscriber profile to which the traffic belongs. The cellular LTE network can provision QoS for both downlink and uplink data flows that are transferred using LWA access.
Abstract:
LWA (LTE/WLAN Aggregation) is a tight integration at radio level which allows for real-time channel and load aware radio resource management across WLAN and LTE to provide significant user perceived throughput (UPT) improvement. When enabling LWA, packets are routed to a base station (eNB) for performing PDCP functionalities as an LTE PDU. Afterwards, the eNB can dispatch the PDU either delivered over LTE link or WLAN link. The UPT improvement depends on how the eNB dispatches the PDU over LTE link or WLAN link. In one novel aspect, the eNB can acquire channel information, load information, and throughput estimation regarding with WLAN link and LTE link. As a result, the eNB can optimize UPT and LWA PDU dispatching algorithm.
Abstract:
Apparatus and methods are provided for finer control for WLAN association. In one novel aspect, an enhanced NCWIK capability negotiation, an UE assistance information exchange, and an enhanced steering command are performed. In one embodiment, the enhanced NCIWK capacity negotiation includes additional UE information for fine selection. In another embodiment, the UE assistance information is sent to the eNB in addition to the measurement report. The UE assistance information is configured by the eNB. In yet another embodiment, the enhanced traffic steering command includes information of a target AP and one or more target channels. In one embodiment, the enhanced traffic steering command further includes channel direction information. In another novel aspect, the UE selects different UL and DL channels based on the received enhanced traffic steering command. In one embodiment, the UL and DL channels for the UE are different channels from the same AP or from different RATS.
Abstract:
A method of collecting and providing traffic statistics in a cellular network in accordance is proposed. A UE establishes an RRC connection with a base station. The UE starts to collect traffic statistics that comprises a CDF curve or a PDF diagram for packet inter-arrival time. The UE may receive a measurement configuration from the base station for the traffic statistics collection. The UE then reports a representation of the traffic statistics to the base station for RRC reconfiguration. The UE may also receive a reporting request from the base station that specifies a representation format. The representation format includes one or more probability values at corresponding inter-arrival time points, at least one slope of the CDF, one or more steep events in the CDF, or a PDF range.
Abstract:
A method of triggering and reporting traffic statistics in a cellular network is proposed. A UE establishes an RRC connection with a base station. The UE collects traffic statistics upon detecting a trigger event. The traffic statistics comprises packet inter-arrival time. The trigger event may be detected by the UE or by the base station. The UE then determines a representation of the traffic statistics and report the result to the base station. The report may be triggered by the UE or by the base station based on another trigger event. Upon receiving the traffic statistics, the base station determines RRC reconfiguration parameters. In one example, DRX timer values are determined based on intra-burst packet inter-arrival time. In another example, RRC release timer is determined based on inter-burst packet inter-arrival time.
Abstract:
A method of uplink shaping and scheduling request (SR) prohibition in RRC Connected Mode is proposed. A UE applies DRX operation in a wireless network, the UE is in RRC Connection mode. The UE processes a data packet to be sent to the network. The data packet is associated with a traffic type. If the data packet belongs to a normal traffic type, then the UE transmits a scheduling request (SR) to the network. If the data packet belongs to a background traffic type, then the UE buffers the data packet and is prohibited from sending the SR to the network until a triggering condition is satisfied. By reducing the activity of uplink transmission, UE power consumption is improved and signaling overhead is reduced.
Abstract:
Apparatus and methods are provided for user-plane LWA PDU routing. In one novel aspect, LTE PDU packets are routed through a WLAN AP to a UE by encapsulation of the data packets. In one embodiment, a bridge/VLAN architecture is used. The UE identifies one or more Ethernet Frames received the WLAN interface as containing the PDCP PDUs by decoding the EtherType. In another embodiment, the WLAN terminated tunneling is used by decoding the EtherType of indicating the PDCP type. In another novel aspect, an UE-terminated tunneling is created. In one embodiment, the IP tunneling is used. In another embodiment, the GRE tunneling is used. The GRE header contains a KEY field to identify the packets as being the LWA packets. In yet another embodiment, the IPSec tunneling is used. The SPI of the header is used to identify the packets as being the LWA data packets.