Abstract:
Various solutions with respect to multi-transmission and receiving points (TRP) and multi-panel transmission in wireless communications are described. A processor of a user equipment (UE) associated with a single media access control (MAC) entity receives signaling from a plurality of network nodes of a wireless network. The processor generates at least one feedback responsive to receiving the signaling. The processor transmits the at least one feedback to at least one network node of the plurality of network nodes.
Abstract:
Various solutions with respect to codebook-based uplink transmission in wireless communications are described. A user equipment (UE) receives a first signal from a network node of a wireless network, with the first signal selecting one or more codewords or a codebook from a plurality of different codebooks within a master codebook as allowed precoders at transmission ranks. The UE also receives a second signal from the network node, with the second signal selecting a precoder among the allowed precoders for uplink (UL) transmission. The UE then processes data using the selected precoder and performs an UL transmission of the processed data to the network node.
Abstract:
Various solutions with respect to codebook-based uplink transmission in wireless communications are described. A user equipment (UE) constructs a precoder to be used to wirelessly communicate with a network node of a wireless network. The UE then performs an uplink (UL) transmission to the network node using the precoder via one or more of a plurality of antennas of the UE.
Abstract:
Various solutions for sounding reference signal (SRS) and channel state information-reference signal (CSI-RS) co-design with respect to user equipment and network apparatus in mobile communications are described. An apparatus may receive a first sequence in a time-frequency resource. The apparatus may receive a second sequence in the same time-frequency resource. The apparatus may determine a first reference signal according to the first sequence. The apparatus may determine a second reference signal according to the second sequence. The apparatus may perform interference measurement based on the first reference signal and the second reference signal.
Abstract:
Various solutions for coordination information transmission with respect to user equipment (UE) and network apparatus in mobile communications are described. A UE may receive downlink control information comprising coordination information from a first node of a wireless network. The coordination information may comprise interference management information. The UE may copy the coordination information and embed the coordination information in uplink control information. The UE may further transmit the uplink control information to a second node of the wireless network.
Abstract:
A method of determining and adapting a contention window size (CWS) based on channel loading for load-based equipment (LBE) listen before talk (LBT) channel access mechanism is proposed. The historic observations obtained from carrier sensing can reflect the state of channel loading, which is then used to adapt the maximal contention window size. A wireless device collects historical channel loading information including the number of idle slots and the number of busy slots. The wireless device uses the historical information to estimate the total number of active devices M in the wireless network and the channel-loading factor. The wireless device then computes the thresholds using the long-term value of M and then adapts the value of the CWS based on the channel-loading factor and the thresholds.
Abstract:
A method of determining and configuring a maximal clear channel assessment (CCA) duration based on channel loading information for frame-based equipment (FBE) listen before talk (LBT) channel access mechanism is proposed. The CCA period is a random CCA duration generated out of the maximal CCA duration, which is configurable and is carried in the radio resource control (RRC) signaling or the beacon signal of LAA. To solve the collision problem in synchronous network and the unfairness problem in asynchronous network, the maximal duration of CCA should be adaptive based on the experienced channel occupancy status and/or the experienced synchronization difference within the network. First, the maximal duration of CCA should be adjusted according to the channel loading. Second, the maximal duration of CCA should be larger than the timing difference between eNBs or between UEs.
Abstract:
Various solutions with respect to codebook-based uplink transmission in wireless communications are described. A user equipment (UE) receives a signal indicating codebook subset restriction (CBSR) from a network node of a wireless network. The UE selects one or more codewords or a codebook from a master codebook based on the CBSR. The master codebook includes codewords from multiple components. The UE then performs a physical uplink shared channel (PUSCH) transmission to the network node using the one or more codewords or the codebook.
Abstract:
Various solutions with respect to codebook-based uplink transmission in wireless communications are described. A user equipment (UE) receives a first signal from a network node of a wireless network, with the first signal selecting one or more codewords or a codebook from a plurality of different codebooks within a master codebook as allowed precoders at transmission ranks. The UE also receives a second signal from the network node, with the second signal selecting a precoder among the allowed precoders for uplink (UL) transmission. The UE then processes data using the selected precoder and performs an UL transmission of the processed data to the network node.
Abstract:
Aspects of the disclosure provide a method of data transmission that includes determining a transmission time interval for transmission of a transport block and setting a segmentation threshold for the transport block to a first threshold or a second threshold that is less than the first threshold based on the determined transmission time interval. The method includes converting the transport block into one or more outgoing code blocks that each has a size not greater than the determined segmentation threshold and encoding the one or more outgoing code blocks for transmission when communication device is configured to transmit the transport block. The method also includes receiving one or more incoming code blocks that each has a size not greater than the determined segmentation threshold and reconstructing the transport block from the one or more incoming code blocks when communication device is configured to receive the transport block.