Abstract:
A mounting frame may be configured as a self-adjusting mounting frame that biases itself against a surface of structure. The mounting frame may be a component, for example, of a remote control device or a faceplate assembly. The mounting frame may be configured to bias a rear surface of the mounting frame against the surface of a structure. The mounting frame may include biasing members. Each biasing member may include an attachment portion and a pair of resilient spring arms that suspend the attachment portion relative to a perimeter wall of the mounting frame such that the attachment portion is spaced further from the rear surface of the mounting frame than locations where the spring arms extend from the mounting frame. The rear surface of the mounting frame may be defined by the perimeter wall.
Abstract:
A remote control device may be configured to be mounted over the toggle actuator of a light switch and to control a load control device. The remote control device may include a base portion and a rotating portion supported by the base portion so as to be rotatable about the base portion. The remote control device may include a control circuit, a wireless communication circuit, and a rotary encoder circuit. The rotary encoder circuit may be configured to translate a force applied to the rotating portion into input signals, and to operate as an antenna of the remote control device. The rotary encoder circuit may be configured to provide the input signals to the control circuit. The control circuit may be configured to translate the one or more input signals into control signals for transmission to the load control device via the wireless communication circuit.
Abstract:
A veneer may be configured to be secured to a backlit button of a control device. A plate portion of the veneer may have one or more indicia machined therethrough. The indicia may define an open portion, a floating portion, and one or more ribs that suspend the floating portion. The one or more ribs may be configured to create an optical illusion that conceals the ribs from view relative to a user of the control device. The rib may define an upper surface that is recessed relative to a front surface of the veneer, and may define opposed sides that extend from a base of the rib to the upper surface. The sides may be tapered between the base and the upper surface, such that the upper surface is narrower than the base. The sides and the upper surface of the rib may be unfinished.
Abstract:
A remote control device is provided that is configured for use in a load control system that includes one or more electrical loads. The remote control device includes a mounting structure and a control unit, and the control unit is configured to be attached to the mounting structure in a plurality of different orientations. The control unit includes a user interface, an orientation sensing circuit, and a communication circuit. The control unit is configured to determine an orientation of the control unit via the orientation sensing circuit. The control unit is also configured to translate a user input from the user interface into control data to control an electrical load of the load control system based on the orientation of the control unit and/or provide a visual indication of an amount of power delivered to the electrical load based on the orientation of the control unit.
Abstract:
A remote control device may control electrical loads and/or load control devices of a load control system without accessing electrical wiring. The remote control device may include a control unit and a base for the control unit. The base may include a frame and a mounting tab that attaches to the paddle actuator of a mechanical switch. The mounting tab may be monolithic with the frame. Alternatively, the base may include a resilient attachment member that extends from the frame and is captively retained by the mounting tab. The frame and the attachment member may be configured such that the attachment member is held in a fixed in position by the frame, or such that the attachment member is translatable relative to the frame. The base may include one or more alignment members. The base may cause a rear surface of the frame to be biased against the mechanical switch.
Abstract:
A veneer may be configured to be secured to a backlit button of a control device. A plate portion of the veneer may have one or more indicia machined therethrough. The indicia may define an open portion, a floating portion, and one or more ribs that suspend the floating portion. The one or more ribs may be configured to create an optical illusion that conceals the ribs from view relative to a user of the control device. The rib may define an upper surface that is recessed relative to a front surface of the veneer, and may define opposed sides that extend from a base of the rib to the upper surface. The sides may be tapered between the base and the upper surface, such that the upper surface is narrower than the base. The sides and the upper surface of the rib may be unfinished.
Abstract:
A control device may be configured to control one or more electrical loads in a load control system. The control device may be a wall-mounted device such as dimmer switch, a remote control device, or a retrofit remote control device. The control device may include a gesture-based user interface for applying advanced control over the one or more electrical loads. The types of control may include absolute and relative control, intensity and color control, preset, zone, or operational mode selection, etc. Feedback may be provided on the control device regarding a status of the one or more electrical loads or the control device.
Abstract:
A control device may be configured to control one or more electrical loads in a load control system. The control device may be a wall-mounted device such as dimmer switch, a remote control device, or a retrofit remote control device. The control device may include a gesture-based user interface for applying advanced control over the one or more electrical loads. The types of control may include absolute and relative control, intensity and color control, preset, zone, or operational mode selection, etc. Feedback may be provided on the control device regarding a status of the one or more electrical loads or the control device.