Abstract:
Systems and methods are provided for achieving convergent light rays emitted by a planar array of light sources. In one embodiment, an imaging device is provided for inspecting semiconductors or other objects. The imaging device includes one or more imaging lens for imaging light reflected from an object. The imaging device also includes a first light source attached to a planar circuit board and a second light source attached to the planar circuit board. The imaging device further includes a first Fresnel prism for directing light from the first light source toward the object from a first direction and a second Fresnel prism for directing light from the second light source toward the object from a second direction. In one embodiment, the imaging device also includes one or more optical elements for increasing or decreasing the divergence of the light.
Abstract:
Systems and methods are provided for achieving convergent light rays emitted by a planar array of light sources. In one embodiment, an imaging device is provided for inspecting semiconductors or other objects. The imaging device includes one or more imaging lens for imaging light reflected from an object. The imaging device also includes a first light source attached to a planar circuit board and a second light source attached to the planar circuit board. The imaging device further includes a first Fresnel prism for directing light from the first light source toward the object from a first direction and a second Fresnel prism for directing light from the second light source toward the object from a second direction. In one embodiment, the imaging device also includes one or more optical elements for increasing or decreasing the divergence of the light.
Abstract:
A process for laser forming a blind via in at least one layer of a circuit substrate having a plurality of capture pads of varying geometry can include, for at least one blind via to be formed in at least one layer of a circuit substrate, evaluating a capture pad geometry value (such as area and/or volume) within a predetermined distance from a drilling location with respect to a blind via geometry value (such as area and/or volume) to be formed at the drilling location. The process can include setting at least one laser operating parameter based on the evaluation in order to obtain a desired capture pad appearance after blind via formation. The process can include imaging a capture pad area defined as an area within a predetermined distance from a blind via drilling location in at least one layer of a circuit substrate, quantifying at least one appearance value for the imaged capture pad area, and determining an acceptability of the imaged capture pad areas based on the quantified appearance value.
Abstract:
A laser processing system quickly and flexibly modifies a processing beam to determine and implement an improved or optimum beam profile for a particular application (or a subset of the application). The system reduces the sensitivity of beam shaping subsystems to variations in the laser processing system, including those due to manufacturing tolerances, thermal drift, variations in component performance, and other sources of system variation. Certain embodiments also manipulate lower quality laser beams (higher M2 values) to provide acceptable shaped beam profiles.
Abstract:
A laser processing system quickly and flexibly modifies a processing beam to determine and implement an improved or optimum beam profile for a particular application (or a subset of the application). The system reduces the sensitivity of beam shaping subsystems to variations in the laser processing system, including those due to manufacturing tolerances, thermal drift, variations in component performance, and other sources of system variation. Certain embodiments also manipulate lower quality laser beams (higher M2 values) to provide acceptable shaped beam profiles.
Abstract:
A method and apparatus is presented for laser machining complex features in workpieces using programmable laser focal spot shapes. A deformable mirror is inserted into the laser beam path of a laser machining system and programmed to alter the shape of the laser beam focal spot in real time as the workpiece is being laser machined in order to achieve improved control over the shape and size of laser machined features.
Abstract:
Embodiments of the present invention employ certain techniques, alone or in combination, to enhance a range of acceptance angles at which an apparatus may efficiently collect solar radiation. One technique positions a passive secondary optical compensator element between collected light and a receiver. In certain embodiments, the compensator element accomplishes refraction followed by at least one total internal reflection of the collected light. Another technique employs a receiver having radially-oriented strings of cells connected in series, where strings in opposing sectors are connected in parallel and in series with each other to reduce a dependence of power and/or current output, on alignment of the collector apparatus relative to a light source.
Abstract:
Systems and methods are provided for achieving convergent light rays emitted by a planar array of light sources. In one embodiment, an imaging device is provided for inspecting semiconductors or other objects. The imaging device includes one or more imaging lens for imaging light reflected from an object. The imaging device also includes a first light source attached to a planar circuit board and a second light source attached to the planar circuit board. The imaging device further includes a first Fresnel prism for directing light from the first light source toward the object from a first direction and a second Fresnel prism for directing light from the second light source toward the object from a second direction. In one embodiment, the imaging device also includes one or more optical elements for increasing or decreasing the divergence of the light.
Abstract:
A method of removing an artifact resulting from an in-line illumination device of an imaging system from an object image. It includes obtaining a first image of the artifact using a first artifact illumination level and imaging the object using the imaging system wherein the illumination device is using an object illumination level. An artifact image is independent of the object and has pixel values related to the illumination level. Thus, the artifact can be removed by subtracting respective pixel values of an artifact image from respective values of the object image on a pixel address-by-pixel address basis. Various illumination levels can be used to create more than one artifact image. The artifact image for the subtraction can be one of the images taken or can be a scaled image where an artifact image is scaled to the object illumination level.
Abstract:
A process for laser forming a blind via in at least one layer of a circuit substrate having a plurality of capture pads of varying geometry can include, for at least one blind via to be formed in at least one layer of a circuit substrate, evaluating a capture pad geometry value (such as area and/or volume) within a predetermined distance from a drilling location with respect to a blind via geometry value (such as area and/or volume) to be formed at the drilling location. The process can include setting at least one laser operating parameter based on the evaluation in order to obtain a desired capture pad appearance after blind via formation. The process can include imaging a capture pad area defined as an area within a predetermined distance from a blind via drilling location in at least one layer of a circuit substrate, quantifying at least one appearance value for the imaged capture pad area, and determining an acceptability of the imaged capture pad areas based on the quantified appearance value.