Abstract:
A gas sensor, which could be a sensor of combustible gases, incorporates a diffusion chamber having symmetrical sensing and reference portions. A common source emits infrared-type radiant energy symmetrically into the two portions. Each portion incorporates a curved reflective surface which reflects incident infrared onto a respective sensor. Each sensor has a filter which passes a different selected band of energy. A fluid, such as gas being sensed, passes laterally through the chamber.
Abstract:
An apparatus and a method for receiving and processing noisy communications signals automatically varies multiple processing parameters to both improve signal-to-noise ratio and to minimize delays in responding to changes in the incoming signal. The signal-to-noise ratio is improved with relatively stable signals by increasing the number of samples used in forming a processed signal value. In response to changes in signal input, the number of samples used in processing is substantially decreased while the sampling rate is substantially increased until the incoming signal exhibits an increased degree of stability. As the incoming signal becomes more stable, the number of samples used in performing a processed signal value is increased toward maximum and the sample rate is decreased. In an apparatus, noisy signals from an ambient condition sensor can be processed in control circuitry, which incorporates executable instructions, for carrying out signal processing with automatic multi-parameter variations in response to incoming signal characteristics. Processed signal values can be displayed locally or made available to a larger system.
Abstract:
An ambient condition detector incorporates an audio transducer for discrimination between alarm and non-alarm conditions. The transducer can provide occupancy information. In addition, a monitoring system can graphically present information as to the location of individuals, such as fire fighters, in the region.
Abstract:
A directional sounder emits audible outputs in a first direction. Audible outputs in a second direction are canceled. Two transducers can be carried in a common housing configured to emit outputs in the first and second directions respectively.
Abstract:
A physiological condition monitor can provide substantially real-time feedback to an individual being monitored. The feedback can be in the form of graphical displays of real-time trends. Both audible and visual warnings can be provided to the individual in response to results of trend analysis.
Abstract:
Control circuitry is coupled to one or more local televisions. Programs or displays being presented on the televisions can be interrupted with displays or information from the control circuitry. Interrupting displays can include medication reminders, or indicators of a condition needing attention.
Abstract:
An apparatus and a method for receiving and processing noisy communications signals automatically varies multiple processing parameters to both improve signal-to-noise ratio and to minimize delays in responding to changes in the incoming signal. The signal-to-noise ratio is improved with relatively stable signals by increasing the number of samples used in forming a processed signal value. In response to changes in signal input, the number of samples used in processing is substantially decreased while the sampling rate is substantially increased until the incoming signal exhibits an increased degree of stability. As the incoming signal becomes more stable, the number of samples used in performing a processed signal value is increased toward maximum and the sample rate is decreased. In an apparatus, noisy signals from an ambient condition sensor can be processed in control circuitry, which incorporates executable instructions, for carrying out signal processing with automatic multi-parameter variations in response to incoming signal characteristics. Processed signal values can be displayed locally or made available to a larger system.
Abstract:
A non-dispersive infra-red gas detector includes a condensation eliminating heater. The heater can be intermittently energized in response to a signal received from an environmental sensor. Signals from a gas sensor in the detector can be processed to determine when to energize the heater.